Question

1) Let S={v_1, ..., v_p} be a linearly dependent set of vectors in R^n. Explain why...

1) Let S={v_1, ..., v_p} be a linearly dependent set of vectors in R^n. Explain why it is the case that if v_1=0, then v_1 is a trivial combination of the other vectors in S.

2) Let S={(0,1,2),(8,8,16),(1,1,2)} be a set of column vectors in R^3. This set is linearly dependent. Label each vector in S with one of v_1, v_2, v_3 and find constants, c_1, c_2, c_3 such that c_1v_1+ c_2v_2+ c_3v_3=0. Further, identify the value j and v_j (as in the proof of the result) and write v_j as a linear combination of the vectors v_1, ..., v_(j-1) as done in the proof. You may need to relabel the vectors to do this!.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that the set is linearly dependent by finding a nontrivial linear combination of vectors in...
Show that the set is linearly dependent by finding a nontrivial linear combination of vectors in the set whose sum is the zero vector. (Use s1, s2, and s3, respectively, for the vectors in the set.) S = {(5, 2), (−1, 1), (2, 0)} a) (0, 0) = b) Express the vector s1 in the set as a linear combination of the vectors s2 and s3. s1 =
Let S={v1,...,Vn} be a linearly dependent set. Use the definition of linear independent / dependent to...
Let S={v1,...,Vn} be a linearly dependent set. Use the definition of linear independent / dependent to show that one vector in S can be expressed as a linear combination of other vectors in S. Please show all work.
Prove this: Given that V is a linearly dependent set of vectors, show that there exists...
Prove this: Given that V is a linearly dependent set of vectors, show that there exists a nontrivial linear combination of the vectors of V that yields the zero vector.
Prove that any set of vectors in R^n that contains the vector zero is linearly dependent.
Prove that any set of vectors in R^n that contains the vector zero is linearly dependent.
Write each vector as a linear combination of the vectors in S. (Use s1 and s2,...
Write each vector as a linear combination of the vectors in S. (Use s1 and s2, respectively, for the vectors in the set. If not possible, enter IMPOSSIBLE.) S = {(1, 2, −2), (2, −1, 1)} (a)    z = (−5, −5, 5) z = ? (b)    v = (−2, −6, 6) v = ? (c)    w = (−1, −17, 17) w = ? Show that the set is linearly dependent by finding a nontrivial linear combination of vectors in the set whose sum...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
Complete the proof Let V be a nontrivial vector space which has a spanning set {xi}...
Complete the proof Let V be a nontrivial vector space which has a spanning set {xi} ki=1. Then there is a subset of {xi} ki=1 which is a basis for V. Proof. We will divide the set {xi} ki=1 into two sets, which we will call good and bad. If x1 ≠ 0, then we label x1 as good and if it is zero, we label it as bad. For each i ≥ 2, if xi ∉ span{x1, . ....
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V....
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V. Then so are {v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}
Suppose we have a vector space V of dimension n. Let R be a linearly independent...
Suppose we have a vector space V of dimension n. Let R be a linearly independent set with order n−2. Let S be a spanning set with order n+ 2. Outline a strategy to extend R to a basis for V. Outline a strategy to pare down S to a basis for V .
Answer all of the questions true or false: 1. a) If one row in an echelon...
Answer all of the questions true or false: 1. a) If one row in an echelon form for an augmented matrix is [0 0 5 0 0] b) A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax=b has at least one solution. c) The solution set of b is the set of all vectors of the form u = + p + vh where vh is any solution...