Question

Show directly that a compact metric space is totally bounded

Show directly that a compact metric space is totally bounded

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
These problems concern the discrete metric. You can assume that the underlying space is R. (a)...
These problems concern the discrete metric. You can assume that the underlying space is R. (a) What does a convergent sequence look like in the discrete metric? (b) Show that the discrete metric yields a counterexample to the claim that every bounded sequence has a convergent subsequence. (c) What does an open set look like in the discrete metric? A closed set? (d) What does a (sequentially or topologically) compact set look like in the discrete metric? (e) Show that...
(4) Show that a totally bounded set is bounded. Is the converse true?
(4) Show that a totally bounded set is bounded. Is the converse true?
Let (X, d) be a compact metric space and let A ⊆ X. Suppose that A...
Let (X, d) be a compact metric space and let A ⊆ X. Suppose that A is not compact. Prove that there exists a continuous function f : A → R, from (A, d) to (R, d|·|), which is not uniformly continuous.
Prove that a continuous real-valued function on a compact metric space assumes its maximum value. I...
Prove that a continuous real-valued function on a compact metric space assumes its maximum value. I want to show this. Pleas explain step by step
4. Is complete metric space always compact? Answer the question by considering the real line R....
4. Is complete metric space always compact? Answer the question by considering the real line R. Justify your argument in detail.
Let (X,d) be a metric space which contains an infinite countable set Ewith the property x,y...
Let (X,d) be a metric space which contains an infinite countable set Ewith the property x,y ∈ E ⇒ d(x,y) = 1. (a) Show E is a closed and bounded subset of X. (b) Show E is not compact. (c) Explain why E cannot be a subset of Rn for any n.
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there...
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there is a nearest point p∈K to x; that is, there is a point p∈K such that, for all other q∈K, d(p,x)≤d(q,x). [Suggestion: As a start, let S={d(x,y):y∈K} and show there is a sequence (qn) from K such that the numerical sequence (d(x,qn)) converges to inf(S).] Let X=R^2 and T={(x,y):x^2+y^2=1}. Show, there is a point z∈X and distinct points a,b∈T that are nearest points to...
Supply proofs for the following miscellaneous propositions from the course in a metric space context: (e)...
Supply proofs for the following miscellaneous propositions from the course in a metric space context: (e) A set is open if and only if its complement is closed. (f) A compact set (you may use either definition) is closed and bounded.
Let A⊆(X,d) a metric space. Suppose there are an infinite number of elements in e1,e2,e3,...∈ A...
Let A⊆(X,d) a metric space. Suppose there are an infinite number of elements in e1,e2,e3,...∈ A such that d(ei,ej)=4 if i≠j and d(ei,ej)=0 if i=j for i,j=1,2,3... Prove that A is not totally bounded. (Please do not write in script and show all your steps and definitions used)
A topological space is totally disconnected if the connected components are all singletons. Prove that any...
A topological space is totally disconnected if the connected components are all singletons. Prove that any countable metric space is totally disconnected.