Question

Find root of the equation cos (x) = xex using Bisection method. Make calculation for 4...

Find root of the equation cos (x) = xex using Bisection method. Make calculation for 4 iterations. Choose xl= 0 and xu= 1. Determine the approximate error in each iteration. Give the final answer in a tabular form.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f(x) = x^3 + x - 4 a. Show that f(x) has a root on...
Let f(x) = x^3 + x - 4 a. Show that f(x) has a root on the interval [1,4] b. Find the first three iterations of the bisection method on f on this interval c. Find a bound for the number of iterations needed of bisection to approximate the root to within 10^-4
Find n for which the nth iteration by the fixed point method is guaranteed to approximate...
Find n for which the nth iteration by the fixed point method is guaranteed to approximate the root of f(x) = x − cos x on [0, π/3] with an accuracy within 10−8 using x0 = π/4 Answer: n = 127 iterations or n = 125 iterations. Please show work to get to answer
Solve the following problem using the MATLAB environment Write a function [approx_root, num_its] = bisection(f,a,b,tol) that...
Solve the following problem using the MATLAB environment Write a function [approx_root, num_its] = bisection(f,a,b,tol) that implements the bisection method. You function should take as input 4 arguments with the last argument being optional, i.e, if the user does not provide the accuracy tol use a default of 1.0e-6 (use varargin to attain this). Your function should output the approximate root, approx_root and the number of iterations it took to attain the root, num_its. However, if the user calls the...
For the following function, determine the highest real root of f(x) = 2x3 – 11.7x2 +...
For the following function, determine the highest real root of f(x) = 2x3 – 11.7x2 + 17.7x - 5 by using (a) graphical methods, (b) fixed point iteration (three iterations, x0 = 3) (Hint: Be certain that you develop a solution that converges on the root), and (c) Newton-Raphson method (three iterations, x0 = 3). Perform an error check on each of your final root approximations (e.g. for the last of the three iterations).
for f=(x^4)-(6.4*x^3)+(6.45*x^2)+(20.538*x)- 31.752; find the roots using bisection for five iterations
for f=(x^4)-(6.4*x^3)+(6.45*x^2)+(20.538*x)- 31.752; find the roots using bisection for five iterations
Find the root of the function: f(x)=2x+sin⁡(x)-e^x, using Newton Method and initial value of 0. Calculate...
Find the root of the function: f(x)=2x+sin⁡(x)-e^x, using Newton Method and initial value of 0. Calculate the approximate error in each step. Use maximum 4 steps (in case you do not observe a convergence).
Consider the function g (x) = 12x + 4 - cos x. Given g (x) =...
Consider the function g (x) = 12x + 4 - cos x. Given g (x) = 0 has a unique solution x = b in the interval (−1/2, 0), and you can use this without justification. (a) Show that Newton's method of starting point x0 = 0 gives a number sequence with b <··· <xn+1 <xn <··· <x1 <x0 = 0 (The word "curvature" should be included in the argument!) (b) Calculate x1 and x2. Use theorem 2 in section...
Consider the function g (x) = 12x + 4 - cos x. Given g (x) =...
Consider the function g (x) = 12x + 4 - cos x. Given g (x) = 0 has a unique solution x = b in the interval (−1/2, 0), and you can use this without justification. (a) Show that Newton's method of starting point x0 = 0 gives a number sequence with b <··· <xn+1 <xn <··· <x1 <x0 = 0 (The word "curvature" should be included in the argument!) (b) Calculate x1 and x2. Use theorem 2 in section...
Consider the function g (x) = 12x + 4 - cos x. Given g (x) =...
Consider the function g (x) = 12x + 4 - cos x. Given g (x) = 0 has a unique solution x = b in the interval (−1/2, 0), and you can use this without justification. (a) Show that Newton's method of starting point x0 = 0 gives a number sequence with b <··· <xn+1 <xn <··· <x1 <x0 = 0 (The word "curvature" should be included in the argument!) (b) Calculate x1 and x2. Use theorem 2 in section...
Newton's method: For a function ?(?)=ln?+?2−3f(x)=ln⁡x+x2−3 a. Find the root of function ?(?)f(x) starting with ?0=1.0x0=1.0....
Newton's method: For a function ?(?)=ln?+?2−3f(x)=ln⁡x+x2−3 a. Find the root of function ?(?)f(x) starting with ?0=1.0x0=1.0. b. Compute the ratio |??−?|/|??−1−?|2|xn−r|/|xn−1−r|2, for iterations 2, 3, 4 given ?=1.592142937058094r=1.592142937058094. Show that this ratio's value approaches |?″(?)/2?′(?)||f″(x)/2f′(x)| (i.e., the iteration converges quadratically). In error computation, keep as many digits as you can.