Question

If p is a rational # and q is an irrrational # Is the number p/q...

If p is a rational # and q is an irrrational #

Is the number p/q rational or irrational and prove your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If p is a rational number and q is an irrrational number Is the number p/4...
If p is a rational number and q is an irrrational number Is the number p/4 + q/5 rational or irrational and prove your answer.
Prove that if p is a positive rational number, then √p + √2 is irrational.
Prove that if p is a positive rational number, then √p + √2 is irrational.
Prove the following: (By contradiction) If p,q are rational numbers, with p<q, then there exists a...
Prove the following: (By contradiction) If p,q are rational numbers, with p<q, then there exists a rational number x with p<x<q.
Let p and q be irrational numbers. Is p−q rational or irrational? Show all proof.
Let p and q be irrational numbers. Is p−q rational or irrational? Show all proof.
10. (a) Prove by contradiction that the sum of an irrational number and a rational number...
10. (a) Prove by contradiction that the sum of an irrational number and a rational number must be irrational. (b) Prove that if x is irrational, then −x is irrational. (c) Disprove: The sum of any two positive irrational numbers is irrational
Prove by contradiction that 5√ 2 is an irrational number. (Hint: Dividing a rational number by...
Prove by contradiction that 5√ 2 is an irrational number. (Hint: Dividing a rational number by another rational number yields a rational number.)
: Prove by contradiction that 5√ 2 is an irrational number. (Hint: Dividing a rational number...
: Prove by contradiction that 5√ 2 is an irrational number. (Hint: Dividing a rational number by another rational number yields a rational number.)
1. Prove that the sum of any rational number with an irrational number must be irrational....
1. Prove that the sum of any rational number with an irrational number must be irrational. 2. Prove or disprove: If a,b, and c are integers such that a|(bc), then a|b or a|c.
Irrational Numbers (a) Prove that for every rational number µ > 0, there exists an irrational...
Irrational Numbers (a) Prove that for every rational number µ > 0, there exists an irrational number λ > 0 satisfying λ < µ. (b) Prove that between every two distinct rational numbers there is at least one irrational number. (Hint: You may find (a) useful)
Prove that between any two rational numbers there is an irrational number.
Prove that between any two rational numbers there is an irrational number.