Question

Let WW be a subset of a vector space VV. By justifying your answer, determine whether...

Let WW be a subset of a vector space VV. By justifying your answer, determine whether WW is a subspace of VV.

(a) [5 marks] W={(x1,x2,x3,x4):x1x4=0}W={(x1,x2,x3,x4):x1x4=0} and V=R4V=R4.

(b) [5 marks] W={A:|A|≥1}W={A:|A|≥1} and V=M3,3V=M3,3, where |A||A| is the determinant of AA.

(c) [10 marks] W={p(x)=a0+a1x+a2x2+a3x3:a0=a1anda2=a3}W={p(x)=a0+a1x+a2x2+a3x3:a0=a1anda2=a3} and V=P3V=P3.

Homework Answers

Answer #1

please upvote

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2,...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2, and ?S is the subset of ?2P2 consisting of all polynomials of the form ?(?)=?2+?.p(x)=x2+c. B. ?=?5(?)V=C5(I), and ?S is the subset of ?V consisting of those functions satisfying the differential equation ?(5)=0.y(5)=0. C. ?V is the vector space of all real-valued functions defined on the interval [?,?][a,b], and ?S is the subset of ?V consisting of those functions satisfying ?(?)=?(?).f(a)=f(b). D. ?=?3(?)V=C3(I), and...
Complete the proof Let V be a nontrivial vector space which has a spanning set {xi}...
Complete the proof Let V be a nontrivial vector space which has a spanning set {xi} ki=1. Then there is a subset of {xi} ki=1 which is a basis for V. Proof. We will divide the set {xi} ki=1 into two sets, which we will call good and bad. If x1 ≠ 0, then we label x1 as good and if it is zero, we label it as bad. For each i ≥ 2, if xi ∉ span{x1, . ....
Determine if the given set V is a subspace of the vector space W, where a)...
Determine if the given set V is a subspace of the vector space W, where a) V={polynomials of degree at most n with p(0)=0} and W= {polynomials of degree at most n} b) V={all diagonal n x n matrices with real entries} and W=all n x n matrices with real entries *Can you please show each step and little bit of an explanation on how you got the answer, struggling to learn this concept?*