Question

Let f : [a,b] → [a,b] be continuous. Define a sequence recursively by z1 = x1,...

Let f : [a,b] → [a,b] be continuous. Define a sequence recursively by z1 = x1, zn = f(zn−1) where x1 ∈ [a,b]. Show that if the sequence {zn} is convergent, then it must converge to a fixed point of f.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. A sequence { bn } is defined recursively bn= -bn-1/2, where b1 = 3. (a)...
. A sequence { bn } is defined recursively bn= -bn-1/2, where b1 = 3. (a) Find an explicit formula for the general term of the bn = f(n). (b) Is the sequence convergent or divergent? (c) Consider the series ∑ approaches infinity and n=1 bn.  Is this series convergent or divergent? (d) If it is convergent, find its sum
Let f be a continuous function. Suppose theres a sequence (x_n) in [0,1] where lim f(x_n))=5....
Let f be a continuous function. Suppose theres a sequence (x_n) in [0,1] where lim f(x_n))=5. Prove there is a point x in [0,1] where f(x)=5.
1) if a sequence is monotone decreasing and greater than 0 for all values of n...
1) if a sequence is monotone decreasing and greater than 0 for all values of n (n=1 to infinity) then the sequence must converge. True or false? 2) In order for infinite series k=1 to infinity (ak + bk) = series ak + series bk, both series must converge. True or false? 3) Let f(x) be a continuous decreasing function where f(k) = ak. If integral 1 to infinity f(x) = 5, what can we conclude about series ak? -series...
Let F be continuous, show that f([a,b]) is a closed interval.
Let F be continuous, show that f([a,b]) is a closed interval.
Define a Q-sequence recursively as follows. B.   x, 4 − x is a Q-sequence for any...
Define a Q-sequence recursively as follows. B.   x, 4 − x is a Q-sequence for any real number x. R.   If x1, x2,   , xj and y1, y2,   , yk are Q-sequences, so is     x1 − 1, x2,   , xj, y1, y2,   , yk − 3. Use structural induction (i.e., induction on the recursive definition) to prove that the sum of the numbers in any Q-sequence is 4. Base Case: Any Q-sequence formed by the base case of the definition has sum x +...
Let H be a subgroup of the group G. Define a set B by B =...
Let H be a subgroup of the group G. Define a set B by B = {x ∈ G | xax−1 ∈ H for all a ∈ H}. Show that H < B.
Let f: [a,b] to R be continuous and strictly increasing on (a,b). Show that f is...
Let f: [a,b] to R be continuous and strictly increasing on (a,b). Show that f is strictly increasing on [a,b].
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) -...
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) - g(b)) < 0. b) Show that inf {|f(x) - g(x)| : x ϵ [a,b]} = 0 and is achieved (is a minimum).
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) -...
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) - g(b)) < 0. a) Show that sup{|f(x) - g(x)| : x ϵ [a, b]} is strictly positive and achieved (is a maximum).
Let f: (0,1) -> R be uniformly continuous and let Xn be in (0,1) be such...
Let f: (0,1) -> R be uniformly continuous and let Xn be in (0,1) be such that Xn-> 1 as n -> infinity. Prove that the sequence f(Xn) converges