Question

A'1(x)=2A1(x)-A2(x)-A3(x) A'2(x)=-A1(x)+2A2(x)-A3(x) A'3(x)=-A1(x)-A2(x)+2A3(x) with A1(0) = 0, A2(0) = 1, and A3(0) = 5 being initial...

A'1(x)=2A1(x)-A2(x)-A3(x)
A'2(x)=-A1(x)+2A2(x)-A3(x)
A'3(x)=-A1(x)-A2(x)+2A3(x)

with A1(0) = 0, A2(0) = 1, and A3(0) = 5 being initial values

solve linear differential equations

Homework Answers

Answer #1

Solved using the known method for solving linear system with real Eigen values.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let a1 = [ 7 2 -1 ] a2 =[ -1 2 3 ] a3= [...
Let a1 = [ 7 2 -1 ] a2 =[ -1 2 3 ] a3= [ 6 4 9 ] a.)determine whether a1 a2 and a3span R3 b.) is a3 in the Span {a1, a2}?
Events A1,A2, and A3 form a partition of sample space S with Pr(A1)=3/7, Pr(A2)=3/7, Pr(A3)=1/7. E...
Events A1,A2, and A3 form a partition of sample space S with Pr(A1)=3/7, Pr(A2)=3/7, Pr(A3)=1/7. E is an event in S with Pr(E|A1)=3/5, Pr(E|A2)=2/5, and Pr(E|A3)=3/5. What is Pr(E)? What is Pr(A2|E)? What is Pr(E')? What is Pr(A2'|E')?
Given the augmented matrix, Find a linear combination of a1, a2, and a3 to produce b....
Given the augmented matrix, Find a linear combination of a1, a2, and a3 to produce b. Verify that this produces b. 1 0 3 10 -1 8 5 6 1 -2 1 6
1) Suppose a1, a2, a3, ... is a sequence of integers such that a1 =1/16 and...
1) Suppose a1, a2, a3, ... is a sequence of integers such that a1 =1/16 and an = 4an−1. Guess a formula for an and prove that your guess is correct. 2) Show that given 5 integer numbers, you can always find two of the numbers whose difference will be a multiple of 4. 3) Four cats and five mice form a row. In how many ways can they form the row if the mice are always together? Please help...
1. (24 pts.) For which integer values of the constant k does the sequence {a1, a2,...
1. (24 pts.) For which integer values of the constant k does the sequence {a1, a2, a3, . . .} defined by an = (5n^k + 3)/(3n^k + 5) converge? For those values of k, compute the limit of the sequence {a1, a2, a3, . . .}.
1. Let |a2| = |a6| and a3=1, find an 2. 4. consecutive terms whose sum =...
1. Let |a2| = |a6| and a3=1, find an 2. 4. consecutive terms whose sum = 40 a2 * a3 = a1*a4 +8, find a1,a2,a3,a4
1. Suppose you are given 3 algorithms A1, A2 and A3 solving the same problem. You...
1. Suppose you are given 3 algorithms A1, A2 and A3 solving the same problem. You know that in the worst case the running times are T1(n) = (10^4)n, T2(n) = 10n , T3(n) = (10^3)(n^3) log10 n (a) Which algorithm is the fastest for very large inputs? Which algorithm is the slowest for very large inputs? (Justify your answer.) (b) For which problem sizes is A1 the best algorithm to use (out of the three)? Answer the same question...
2. Exercise 19 section 5.4. Suppose that a1, a2, a3, …. Is a sequence defined as...
2. Exercise 19 section 5.4. Suppose that a1, a2, a3, …. Is a sequence defined as follows: a1=1 ak=2a⌊k/2⌋ for every integer k>=2. Prove that an <= n for each integer n >=1. plzz send with all the step
let p1(x) = x^2-3x-10 ,p2(x)=x^2-5x+1,p3(x)=x^2+2x+3 and p4(x)=x+5 a- As an alternative ; we can form additional...
let p1(x) = x^2-3x-10 ,p2(x)=x^2-5x+1,p3(x)=x^2+2x+3 and p4(x)=x+5 a- As an alternative ; we can form additional equation involving a1,a2,a3,and a4 using differntiation.explain how how to produce a system of equation with unknown constant a1,a2,a3,a4. Since there are 4 unknown ,you will need 4 equattion find them b- Find Basis for the vector space spanned by p1(X),p2(x),p3(x),p4(x). express any reductant vector in terms of linear combination of the others .Note you might want to use row in the changes?
H(a1,…,an)={(x1,…,xn)∈Fn : a1x1+⋯+anxn=0} Consider the special case of H(1,2,3)⊂R3 defined as above for (a1,a2,a3)=(1,2,3)∈R3. Find a...
H(a1,…,an)={(x1,…,xn)∈Fn : a1x1+⋯+anxn=0} Consider the special case of H(1,2,3)⊂R3 defined as above for (a1,a2,a3)=(1,2,3)∈R3. Find a basis for H(1,2,3) and state the dimension of H(1,2,3).