Question

1. For n exists in R, we define the function f by f(x)=x^n, x exists in...

1. For n exists in R, we define the function f by f(x)=x^n, x exists in (0,1), and f(x):=0 otherwise. For what value of n is f integrable?

2. For m exists in R, we define the function g by g(x)=x^m, x exists in (1,infinite), and g(x):=0 otherwise. For what value of m is g integrable?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f:[0,1]——>R be define by f(x)= x if x belong to rational number and 0 if...
Let f:[0,1]——>R be define by f(x)= x if x belong to rational number and 0 if x belong to irrational number and let g(x)=x (a) prove that for all partitions P of [0,1],we have U(f,P)=U(g,P).what does mean about U(f) and U(g)? (b)prove that U(g) greater than or equal 0.25 (c) prove that L(f)=0 (d) what does this tell us about the integrability of f ?
Define a function f as follows: f ( x ) = sin ⁡ ( x )...
Define a function f as follows: f ( x ) = sin ⁡ ( x ) x , i f x ≠ 0 , a n d f ( 0 ) = 1. Then f is a continuous function. Find the trapezoidal approximation to the integral ∫ 0 π f ( x ) d xusing n = 4 trapezoids. Write out the sum formally and give a decimal value for it.
(b) Define f : R → R by f(x) := x 2 sin 1 x for...
(b) Define f : R → R by f(x) := x 2 sin 1 x for x 6= 0, and f(x) = 0 for x = 0. Does f 0 (0) exist? Prove your claim.
A function f”R n × R m → R is bilinear if for all x, y...
A function f”R n × R m → R is bilinear if for all x, y ∈ R n and all w, z ∈ R m, and all a ∈ R: • f(x + ay, z) = f(x, z) + af(y, z) • f(x, w + az) = f(x, w) + af(x, z) (a) Prove that if f is bilinear, then (0.1) lim (h,k)→(0,0) |f(h, k)| |(h, k)| = 0. (b) Prove that Df(a, b) · (h, k) = f(a,...
If f:X→Y is a function and A⊆X, then define f(A) ={y∈Y:f(a) =y for some a∈A}. (a)...
If f:X→Y is a function and A⊆X, then define f(A) ={y∈Y:f(a) =y for some a∈A}. (a) If f:R→R is defined by f(x) =x^2, then find f({1,3,5}). (b) If g:R→R is defined by g(x) = 2x+ 1, then find g(N). (c) Suppose f:X→Y is a function. Prove that for all B, C⊆X,f(B∩C)⊆f(B)∩f(C). Then DISPROVE that for all B, C⊆X,f(B∩C) =f(B)∩f(C).
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
Show that the series \sum_{n=1}^{\infty} 1/(x^2 + n^2) defines a differentiable function f: R -> R...
Show that the series \sum_{n=1}^{\infty} 1/(x^2 + n^2) defines a differentiable function f: R -> R for which f' is continuous. I'm thinking about using Cauchy Criterion to solve it, but I got stuck at trying to find the N such that the sequence of the partial sum from m+1 to n is bounded by epsilon
In this question, we are going to call a function, f : R → R, type...
In this question, we are going to call a function, f : R → R, type A, if ∀x ∈ R, ∃y ∈ R such that y ≥ x and |f(y)| ≥ 1. We also say that a function, g, is type B if ∃x ∈ R such that ∀y ∈ R, if y ≥ x, then |f(y)| ≥1 Prove or find a counterexample for the following statements. (a) If a function is type A, then it is type B....
Exercise1.2.1: Prove that if t > 0 (t∈R), then there exists an n∈N such that 1/n^2...
Exercise1.2.1: Prove that if t > 0 (t∈R), then there exists an n∈N such that 1/n^2 < t. Exercise1.2.2: Prove that if t ≥ 0(t∈R), then there exists an n∈N such that n−1≤ t < n. Exercise1.2.8: Show that for any two real numbers x and y such that x < y, there exists an irrational number s such that x < s < y. Hint: Apply the density of Q to x/(√2) and y/(√2).
Consider the function f defined on R by f(x) = ?0 if x ≤ 0, f(x)...
Consider the function f defined on R by f(x) = ?0 if x ≤ 0, f(x) = e^(−1/x^2) if x > 0. Prove that f is indefinitely differentiable on R, and that f(n)(0) = 0 for all n ≥ 1. Conclude that f does not have a converging power series expansion En=0 to ∞[an*x^n] for x near the origin. [Note: This problem illustrates an enormous difference between the notions of real-differentiability and complex-differentiability.]