Question

Prove the following statement: If x ∈ R, then x2 + 1 > x.

Prove the following statement: If x ∈ R, then x2 + 1 > x.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that R[x]/〈x2 + 1〉 ∼= C as rings.
Prove that R[x]/〈x2 + 1〉 ∼= C as rings.
Using only definition 4.3.1 (continuity), prove that f(x)=x2+3x+4 is continuous on R.
Using only definition 4.3.1 (continuity), prove that f(x)=x2+3x+4 is continuous on R.
Prove this statement or show why it's false (provide a counter example) ∀x(R(x) ∨ S(x)) →...
Prove this statement or show why it's false (provide a counter example) ∀x(R(x) ∨ S(x)) → (∃xR(x) ∨ ∃yS(y))
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x)...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x) /(1+x) is uniformly continuous on (0, ∞) but not uniformly continuous on (−1, 1).
Prove the following: Theorem. Let X be a set and {Xi ⊆ X : i ∈...
Prove the following: Theorem. Let X be a set and {Xi ⊆ X : i ∈ I} be a partition of X. Then R = { (x1, x2) ∈ X × X : ∃i ∈ I,(x1 ∈ Xi) ∧ (x2 ∈ Xi) } is an equivalence relation on X.
Consider the set V = (x,y) x,y ∈ R with the following two operations: • Addition:...
Consider the set V = (x,y) x,y ∈ R with the following two operations: • Addition: (x1,y1)+(x2,y2)=(x1 +x2 +1, y1 +y2 +1) • Scalarmultiplication:a(x,y)=(ax+a−1, ay+a−1). Prove or disprove: With these operations, V is a vector space over R
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective....
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective. (b)Show that f is not surjective.
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
Decide if the following statement is true or false. {-3, -2, -1} = {x ∈ R...
Decide if the following statement is true or false. {-3, -2, -1} = {x ∈ R | -3 ≤ x ≤ -1}. Justify your answer.
Prove the following: Theorem. Let R ⊆ X × Y and S ⊆ Y × Z...
Prove the following: Theorem. Let R ⊆ X × Y and S ⊆ Y × Z be relations. Then 1. Range(S ◦ R) ⊆ Range(S), and 2. if Domain(S) ⊆ Range(R), then Range(S ◦ R) = Range(S)