Question

Find a nonzero function f: R -> R such that (f o f)(r) = 0 for...

Find a nonzero function f: R -> R such that (f o f)(r) = 0 for all r E R. Does there exist such a function that is 1-1? Justify your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Does there exist a continuous onto function f : [0, 1] → R? Does there exist...
Does there exist a continuous onto function f : [0, 1] → R? Does there exist a continuous onto function f : (0, 1) → (−1, 0) ∪ (0, 1)?
Consider the function f defined on R by f(x) = ?0 if x ≤ 0, f(x)...
Consider the function f defined on R by f(x) = ?0 if x ≤ 0, f(x) = e^(−1/x^2) if x > 0. Prove that f is indefinitely differentiable on R, and that f(n)(0) = 0 for all n ≥ 1. Conclude that f does not have a converging power series expansion En=0 to ∞[an*x^n] for x near the origin. [Note: This problem illustrates an enormous difference between the notions of real-differentiability and complex-differentiability.]
Let f : E → R be a differentiable function where E = [a,b] or E...
Let f : E → R be a differentiable function where E = [a,b] or E = (−∞,∞), show that if f′(x) not = 0 for all x ∈ E then f is one-to-one, i.e., there does not exist distinct points x1,x2 ∈ E such that f(x1) = f(x2). Deduce that f(x) = 0 for at most one x.
For the given function: f [0; 3]→R is continuous, and all of its values are rational...
For the given function: f [0; 3]→R is continuous, and all of its values are rational numbers. It is also known that f(0) = 1. Can you find f(3)?Justification b) Let [x] denote the smallest integer, not larger than x. For instance,[2.65] = 2 = [2], [−1.5] =−2. Caution: [x] is not equal to |x|! Find the points at which the function f : R→R. f(x) = cos([−x] + [x]) has or respectively, does not have a derivative.
Consider the function f : R 2 → R defined by f(x, y) = 4 +...
Consider the function f : R 2 → R defined by f(x, y) = 4 + x 3 + y 3 − 3xy. (a)Compute the directional derivative of f at the point (a, b) = ( 1 2 , 1 2 ), in the direction u = ( √ 1 2 , − √ 1 2 ). At the point ( 1 2 , 1 2 ), is u the direction of steepest ascent, steepest descent, or neither? Justify your...
[Series circuit analogue: RLC circuit with nonzero resistance R and nonzero voltage E(t) as forcing function...
[Series circuit analogue: RLC circuit with nonzero resistance R and nonzero voltage E(t) as forcing function is analogous to a forced damped spring/mass system.] Consider the RLC circuit with inductance L = 8 henrys, resistance R = 16 ohms, capacitance C = 0.025 farads, and voltage E(t) = 17 cos 2t volts. (a) Find the current in the circuit for t > 0, given that at time t = 0 the capacitor is uncharged and there is no current flowing....
Question 4: The function f : {0,1,2,...} → R is defined byf(0) = 7, f(n) =...
Question 4: The function f : {0,1,2,...} → R is defined byf(0) = 7, f(n) = 5·f(n−1)+12n2 −30n+15 ifn≥1.• Prove that for every integer n ≥ 0, f(n)=7·5n −3n2. Question 5: Consider the following recursive algorithm, which takes as input an integer n ≥ 1 that is a power of two: Algorithm Mystery(n): if n = 1 then return 1 else x = Mystery(n/2); return n + xendif • Determine the output of algorithm Mystery(n) as a function of n....
1. Find T5(x): Taylor polynomial of degree 5 of the function f(x)=cos(x) at a=0. T5(x)=   Using...
1. Find T5(x): Taylor polynomial of degree 5 of the function f(x)=cos(x) at a=0. T5(x)=   Using the Taylor Remainder Theorem, find all values of x for which this approximation is within 0.00054 of the right answer. Assume for simplicity that we limit ourselves to |x|≤1. |x|≤ = 2. Use the appropriate substitutions to write down the first four nonzero terms of the Maclaurin series for the binomial:   (1+7x)^1/4 The first nonzero term is:     The second nonzero term is:     The third...
4. Let f be a function with domain R. Is each of the following claims true...
4. Let f be a function with domain R. Is each of the following claims true or false? If it is false, show it with a counterexample. If it is true, prove it directly from the FORMAL DEFINITION of a limit. (a) IF limx→∞ f(x) = ∞ THEN limx→∞ sin (f(x))  does not exist. (b) IF f(−1) = 0 and f(1) = 2 THEN limx→∞ f(sin(x)) does not exist.
i) F o r t h e f o l l o w I n g...
i) F o r t h e f o l l o w I n g f i n d t h e ( c o m p. E x p.) f o u r I e r s e r i e s f o r x( t ) I I ) D r a w t h e am p &. P h a s e s p e c t r a I I I ) T...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT