Question

Suppose E is a given set, and On, for n ∈ N, is the set defined...

Suppose E is a given set, and On, for nN, is the set defined by

On = {x ∈ Rd : d(x, E) < 1/n }.

Prove that On is open and bounded then, m(E) = limn →∞ m(On).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 1. Suppose E is a given set, and On, for n ∈ N, is the...
Problem 1. Suppose E is a given set, and On, for n ∈ N, is the set defined by On = {x ∈ Rd : d(x, E) < 1/n }. (a) Prove that On is open. (b) Prove that if E is compact, then m(E) = limn →∞ m(On). (c) Would the above be true for E closed and unbounded set? (d) Would the above be true for E open and bounded set?
Let N* be the set of positive integers. The relation ∼ on N* is defined as...
Let N* be the set of positive integers. The relation ∼ on N* is defined as follows: m ∼ n ⇐⇒ ∃k ∈ N* mn = k2 (a) Prove that ∼ is an equivalence relation. (b) Find the equivalence classes of 2, 4, and 6.
Suppose that a sequence an (n = 0,1,2,...) is defined recursively by a0 = 1, a1...
Suppose that a sequence an (n = 0,1,2,...) is defined recursively by a0 = 1, a1 = 7, an = 4an−1 − 4an−2 (n ≥ 2). Prove by induction that an = (5n + 2)2n−1 for all n ≥ 0.
A function f on a measurable subset E of Rd is measurable if for all a...
A function f on a measurable subset E of Rd is measurable if for all a in R, the set f-1([-∞,a)) = {x in E: f(x) < a} is measurable Prove that if f is continuous on Rd then f is measurable
1. A function f : Z → Z is defined by f(n) = 3n − 9....
1. A function f : Z → Z is defined by f(n) = 3n − 9. (a) Determine f(C), where C is the set of odd integers. (b) Determine f^−1 (D), where D = {6k : k ∈ Z}. 2. Two functions f : Z → Z and g : Z → Z are defined by f(n) = 2n^ 2+1 and g(n) = 1 − 2n. Find a formula for the function f ◦ g. 3. A function f :...
Prove that the set of real numbers of the form e^n,n= 0,=+-1,+-2,... is countable.
Prove that the set of real numbers of the form e^n,n= 0,=+-1,+-2,... is countable.
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only...
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only if every infinite subset of E has a point of accumulation that belongs to E. Use Theorem 4.21: [Bolzano-Weierstrass Property] A set of real numbers is closed and bounded if and only if every sequence of points chosen from the set has a subsequence that converges to a point that belongs to E. Must use Theorem 4.21 to prove Corollary 4.22 and there should...
(5) Let P be a proposition defined on N∗ n for some n ∈ N∗ ....
(5) Let P be a proposition defined on N∗ n for some n ∈ N∗ . Let P(n) be true. Suppose ∀j, 1 < j ≤ n, P(j) =⇒ P(j − 1). Prove that P(1), . . . P(n) is true.
Assume S is a recursivey defined set, defined by the following properties: 1 ∈ S n...
Assume S is a recursivey defined set, defined by the following properties: 1 ∈ S n ∈ S ---> 2n ∈ S n ∈ S ---> 7n ∈ S Use structural induction to prove that all members of S are numbers of the form 2^a7^b, with a and b being non-negative integers. Your proof must be concise. Remember to avoid the following common mistakes on structural induction proofs: -trying to force structural Induction into linear Induction. the inductive step is...
Prove that in R^n with the usual topology, if a set is closed and bounded then...
Prove that in R^n with the usual topology, if a set is closed and bounded then it is compact.