Question

Prove the following: (By contradiction) If p,q are rational numbers, with p<q, then there exists a...

Prove the following: (By contradiction)

If p,q are rational numbers, with p<q, then there exists a rational number x with p<x<q.

Homework Answers

Answer #1

Please feel free to ask for any query and rate positively.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
10. (a) Prove by contradiction that the sum of an irrational number and a rational number...
10. (a) Prove by contradiction that the sum of an irrational number and a rational number must be irrational. (b) Prove that if x is irrational, then −x is irrational. (c) Disprove: The sum of any two positive irrational numbers is irrational
Ex 2. Prove by contradiction the following claims. In each proof highlight what is the contradiction...
Ex 2. Prove by contradiction the following claims. In each proof highlight what is the contradiction (i.e. identify the proposition Q such that you have Q ∧ (∼Q)). Claim 1: The sum of a rational number and an irrational number is irrational. (Recall that x is said to be a rational number if there exist integers a and b, with b 6= 0 such that x = a b ). Claim 2: There is no smallest rational number strictly greater...
Prove, that between any rational numbers there exists an irrational number.
Prove, that between any rational numbers there exists an irrational number.
Prove that the only ring homomorphism from Q (rational numbers) to Q (rational numbers) is the...
Prove that the only ring homomorphism from Q (rational numbers) to Q (rational numbers) is the identity map.
Irrational Numbers (a) Prove that for every rational number µ > 0, there exists an irrational...
Irrational Numbers (a) Prove that for every rational number µ > 0, there exists an irrational number λ > 0 satisfying λ < µ. (b) Prove that between every two distinct rational numbers there is at least one irrational number. (Hint: You may find (a) useful)
6. Define S={q∈Q:−√3< q <√3}, where Q denotes the rational numbers. Prove that S can not...
6. Define S={q∈Q:−√3< q <√3}, where Q denotes the rational numbers. Prove that S can not be the set of subsequential limits of any sequence (sn) of reals. Please be very verbose. I already have the answer to this question as a contradiction. It is okay if you use a contradiction, however please explain thoroughly.
Recall that Q+ denotes the set of positive rational numbers. Prove that Q+ x Q+ (Q+...
Recall that Q+ denotes the set of positive rational numbers. Prove that Q+ x Q+ (Q+ cross Q+) is countably infinite.
Prove by contradiction that 5√ 2 is an irrational number. (Hint: Dividing a rational number by...
Prove by contradiction that 5√ 2 is an irrational number. (Hint: Dividing a rational number by another rational number yields a rational number.)
: Prove by contradiction that 5√ 2 is an irrational number. (Hint: Dividing a rational number...
: Prove by contradiction that 5√ 2 is an irrational number. (Hint: Dividing a rational number by another rational number yields a rational number.)
If p is a rational # and q is an irrrational # Is the number p/q...
If p is a rational # and q is an irrrational # Is the number p/q rational or irrational and prove your answer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT