Question

(Adam’s Theorem) Prove that a ∈ Zn is a cyclic generator of Zn (i.e. hai =...

(Adam’s Theorem) Prove that a ∈ Zn is a cyclic generator of Zn (i.e. hai = Zn) if and only if gcd(a, n) = 1.

(b) Find all cyclic generators of Z24.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Zn = {0, 1, 2, . . . , n − 1}, let · represent...
Let Zn = {0, 1, 2, . . . , n − 1}, let · represent multiplication (mod n), and let a ∈ Zn. Prove that there exists b ∈ Zn such that a · b = 1 if and only if gcd(a, n) = 1.
For any integer n>1, prove that Zn[x]/<x> is isomorphic to Zn. Please explain best way possible...
For any integer n>1, prove that Zn[x]/<x> is isomorphic to Zn. Please explain best way possible and use First Isomorphism Theorem for rings.
Prove that if x ∈ Zn − {0} and x has no common divisor with n...
Prove that if x ∈ Zn − {0} and x has no common divisor with n greater than 1, then x has a multiplicative inverse in (Zn − {0}, ·n). State the theorem about Euler’s φ function and show why this fact implies it.
Prove Euler’s theorem: if n and a are positive integers with gcd(a,n)=1, then aφ(n)≡1 modn, where...
Prove Euler’s theorem: if n and a are positive integers with gcd(a,n)=1, then aφ(n)≡1 modn, where φ(n) is the Euler’s function of n.
use the fundamental theorem of arithmetic to prove: if a divides bc and gcd(a,b)=1 then a...
use the fundamental theorem of arithmetic to prove: if a divides bc and gcd(a,b)=1 then a divides c.
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
1. Prove that an integer a is divisible by 5 if and only if a2 is...
1. Prove that an integer a is divisible by 5 if and only if a2 is divisible by 5. 2. Deduce that 98765432 is not a perfect square. Hint: You can use any theorem/proposition or whatever was proved in class. 3. Prove that for all integers n,a,b and c, if n | (a−b) and n | (b−c) then n | (a−c). 4. Prove that for any two consecutive integers, n and n + 1 we have that gcd(n,n + 1)...
Let a be an element of order n in a group and d = gcd(n,k) where...
Let a be an element of order n in a group and d = gcd(n,k) where k is a positive integer. a) Prove that <a^k> = <a^d> b) Prove that |a^k| = n/d c) Use the parts you proved above to find all the cyclic subgroups and their orders when |a| = 100.
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only...
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only if gcd(a, b^2 ) = 1
(2) Letn∈Z+ withn>1. Provethatif[a]n isaunitinZn,thenforeach[b]n ∈Zn,theequation[a]n⊙x=[b]n has a unique solution x ∈ Zn. Note: You must...
(2) Letn∈Z+ withn>1. Provethatif[a]n isaunitinZn,thenforeach[b]n ∈Zn,theequation[a]n⊙x=[b]n has a unique solution x ∈ Zn. Note: You must find a solution to the equation and show that this solution is unique. (3) Let n ∈ Z+ with n > 1, and let [a]n, [b]n ∈ Zn with [a]n ̸= [0]n. Prove that, if the equation [a]n ⊙ x = [b]n has no solution x ∈ Zn, then [a]n must be a zero divisor.