Question

Let f and g be continuous functions from C to C and let D be a...

Let f and g be continuous functions from C to C and let D be a dense

subset of C, i.e., the closure of D equals to C. Prove that if f(z) = g(z) for

all x element of D, then f = g on C.

Homework Answers

Answer #1

Kindly give a thumbs up

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f, g : X −→ C denote continuous functions from the open subset X of...
Let f, g : X −→ C denote continuous functions from the open subset X of C. Use the properties of limits given in section 16 to verify the following: (a) The sum f+g is a continuous function. (b) The product fg is a continuous function. (c) The quotient f/g is a continuous function, provided g(z) != 0 holds for all z ∈ X.
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous...
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous functions. If limx→a f(x) = f(a) and limx→a g(x) = g(a) with f(a) < g(a), then there exists δ > 0 such that x ∈ D, 0 < |x − a| < δ =⇒ f(x) < g(x).
Let (X, d) be a metric space, and let U denote the set of all uniformly...
Let (X, d) be a metric space, and let U denote the set of all uniformly continuous functions from X into R. (a) If f,g ∈ U and we define (f + g) : X → R by (f + g)(x) = f(x) + g(x) for all x in X, show that f+g∈U. In words,U is a vector space over R. (b)If f,g∈U and we define (fg) : X → R by (fg)(x) = f(x)g(x) for all x in X,...
if f is continuous on [c,d], f(z) is equal to or greater than zero for all...
if f is continuous on [c,d], f(z) is equal to or greater than zero for all z belongs to [c,d], and the integration of f(z) from c to d equals zero, then prove that f(z)=0 for all z belongs to [c,d].
Let C [0,1] be the set of all continuous functions from [0,1] to R. For any...
Let C [0,1] be the set of all continuous functions from [0,1] to R. For any f,g ∈ C[0,1] define dsup(f,g) = maxxE[0,1] |f(x)−g(x)| and d1(f,g) = ∫10 |f(x)−g(x)| dx. a) Prove that for any n≥1, one can find n points in C[0,1] such that, in dsup metric, the distance between any two points is equal to 1. b) Can one find 100 points in C[0,1] such that, in d1 metric, the distance between any two points is equal to...
Let f and g be continuous functions on the reals and let S={x in R |...
Let f and g be continuous functions on the reals and let S={x in R | f(x)>=g(x)} . Show that S is a closed set.
Let f(z) and g(z) be entire functions, with |f(z) - g(z)| < M for some positive...
Let f(z) and g(z) be entire functions, with |f(z) - g(z)| < M for some positive real number M and all z in C. Prove that f'(z) = g'(z) for all z in C.
Let f and g be measurable unsigned functions on R^d . Assume f(x) ≤ g(x) for...
Let f and g be measurable unsigned functions on R^d . Assume f(x) ≤ g(x) for almost every x. Prove that the integral of f dx ≤ Integral of g dx.
1. Let A = {1,2,3,4} and let F be the set of all functions f from...
1. Let A = {1,2,3,4} and let F be the set of all functions f from A to A. Prove or disprove each of the following statements. (a)For all functions f, g, h∈F, if f◦g=f◦h then g=h. (b)For all functions f, g, h∈F, iff◦g=f◦h and f is one-to-one then g=h. (c) For all functions f, g, h ∈ F , if g ◦ f = h ◦ f then g = h. (d) For all functions f, g, h ∈...
Let A, B, C be sets and let f : A → B and g :...
Let A, B, C be sets and let f : A → B and g : f (A) → C be one-to-one functions. Prove that their composition g ◦ f , defined by g ◦ f (x) = g(f (x)), is also one-to-one.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT