Question

Show that F[x] is not a field.

Show that F[x] is not a field.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that if F is a field, then F[x] is a principal ideal ring
Show that if F is a field, then F[x] is a principal ideal ring
Let f(x) be polynomial function in field F[x]. f’(x) be the derivative of f(x). Given the...
Let f(x) be polynomial function in field F[x]. f’(x) be the derivative of f(x). Given the greatest common factor (f(x), f’(x))=1. And (x-a)|f(x). Show that (x-a)^2 can not divide f(x).
Let f(x) be a nonzero polynomial in F[x]. Show that f(x) is a unit in F[x]...
Let f(x) be a nonzero polynomial in F[x]. Show that f(x) is a unit in F[x] if and only if f(x) is a nonzero constant polynomial, that is, f(x) =c where 0F is not equal to c where c is a subset of F. Hence deduce that F[x] is not a field.
Show that the vector field F(x,y,z)=(−5ycos(−5x),−5xsin(−5y),0)| is not a gradient vector field by computing its curl....
Show that the vector field F(x,y,z)=(−5ycos(−5x),−5xsin(−5y),0)| is not a gradient vector field by computing its curl. How does this show what you intended? curl(F)=∇×F=( ? , ? , ?).
Let F be a field and let f(x) be an element of F[x] be an an...
Let F be a field and let f(x) be an element of F[x] be an an irreducible polynomial. Suppose K is an extension field containing F and that alpha is a root of f(x). Define a function f: F[x] ---> K by f:g(x) = g(alpha). Prove the ker(f) =<f(x)>.
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by...
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by finding a function f such that and use that to evaluate where C is any path from (1,0,-2) to (4,6,3)
Suppose F is a field. Use the field axioms to show the following: (a) For all...
Suppose F is a field. Use the field axioms to show the following: (a) For all a,b in F, there exists some c in F such that a+c=b (b) For all a,b in F where a doesn't equal 0, there exists some c in F such that ac=b
show that F={a+bi |a,b ∈ Q} is a field
show that F={a+bi |a,b ∈ Q} is a field
Let F be a field, and let f (x), g(x) ∈ F [x] be nonzero polynomials....
Let F be a field, and let f (x), g(x) ∈ F [x] be nonzero polynomials. Then it must be the case that deg(f (x)g(x)) = deg(f (x)) + deg(g(x)).
Let F be a field and f(x), g(x) ? F[x] both be of degree ? n....
Let F be a field and f(x), g(x) ? F[x] both be of degree ? n. Suppose that there are distinct elements c0, c1, c2, · · · , cn ? F such that f(ci) = g(ci) for each i. Prove that f(x) = g(x) in F[x].
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT