Question

Solve using the Laplace Transform: 2y"+y'-y = 3+2e^3t where y(1) = 0 and y'(1) = 3

Solve using the Laplace Transform: 2y"+y'-y = 3+2e^3t where y(1) = 0 and y'(1) = 3

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve y'-3y=2e^t y(0)=e^3-e using Laplace transform.
Solve y'-3y=2e^t y(0)=e^3-e using Laplace transform.
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
y^''-y^'-2y= e^t , y(0)=0 and y^'(0)=1 Solve by using laplace transform
y^''-y^'-2y= e^t , y(0)=0 and y^'(0)=1 Solve by using laplace transform
Use Laplace transform to solve IVP 2y”+2y’+y=2t , y(0)=1 , y’(0)=-1
Use Laplace transform to solve IVP 2y”+2y’+y=2t , y(0)=1 , y’(0)=-1
Solve the initial value problem using Laplace transform theory.                   y”-2y’+10y=24t,   y(0)=0,   y'(0)= -1
Solve the initial value problem using Laplace transform theory.                   y”-2y’+10y=24t,   y(0)=0,   y'(0)= -1
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is...
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is the Dirac delta function.
Solve the system of equations by method of the Laplace transform: 3 dx/dt + 3x +2y...
Solve the system of equations by method of the Laplace transform: 3 dx/dt + 3x +2y = e^t 4x - 3 dy/dt +3y = 3t x(0)= 1, y(0)= -1
Use the Laplace transform to solve: y’’ + 2y’ + y = e^(2t); y(0) = 0,...
Use the Laplace transform to solve: y’’ + 2y’ + y = e^(2t); y(0) = 0, y’(0) = 0.
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now...
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now solve the IVP by using the inverse Laplace Transform y(t)=L^−1{Y(s)} y(t) =
Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT