Question

Show that symmetric sentences are independent from reflexive, and transitive sentences by constructing a structure that...

Show that symmetric sentences are independent from reflexive, and transitive sentences by constructing a structure that satisfy transitive and reflexive quality but not symmetric.

Reflexive :∀xE(x, x)
symmetric :∀xy(E(x, y) → E(y, x))

transitive: ∀xyz(E(x, y) ∧ E(y, z) → E(x, z))

Homework Answers

Answer #1

Symmetric sentences are independent from reflexive, and transitive sentences, let us consider an example

E(x,y) : x divides y and take domain as set of integers

Then it is reflexive because x divides x for all x.

It is transitive because let E(x, y) ∧ E(y, z) then there exists two integers k​​​​​​1 and k​​​​​​2 such that y=xk​​​​​1 and z =yk​​​​​2 , then

z=(xk​​​​​1)k​​​​​​2 implies x divides z i.e E(x,z).

But it is not symmetric because E(2,4) is true but E(4,2) is not true.

2 divides 4 but 4 doesn't divides 2.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that reflexive sentences are independent from symmetric, and transitive sentences by constructing a structure that...
Show that reflexive sentences are independent from symmetric, and transitive sentences by constructing a structure that satisfy symmetric and transitive quality but not reflexive. Reflexive :∀xE(x, x) symmetric :∀xy(E(x, y) → E(y, x)) transitive: ∀xyz(E(x, y) ∧ E(y, z) → E(x, z))
show that the relation "≈" is reflexive, symmetric, and transitive on the class of all sets.
show that the relation "≈" is reflexive, symmetric, and transitive on the class of all sets.
Determine whether the following is reflexive, symmetric, antisymmetric, transitive, and/or a partial order: (x, y) ∈...
Determine whether the following is reflexive, symmetric, antisymmetric, transitive, and/or a partial order: (x, y) ∈ R if 3 divides x – y
(a) When are two random variables X and Y independent? (b) Show that if E(XY )...
(a) When are two random variables X and Y independent? (b) Show that if E(XY ) = E(X)E(Y ) then V ar(X + Y ) = V ar(X) + V ar(Y ).
X, Y, Z are 3 independent random variables. We know that Y, Z is the 0-1...
X, Y, Z are 3 independent random variables. We know that Y, Z is the 0-1 random variables indicating whether tossing a regular coin gets a head (1 means getting a head and 0 means not). We also know the following equations, E(X2Y +XYZ)=7 E(XY 2 + XZ2) = 3 Please calculate the expectation and variance of variable X.
Suppose that X, Y, and Z are independent, with E[X]=E[Y]=E[Z]=2, and E[X2]=E[Y2]=E[Z2]=5. Find cov(XY,XZ). (Enter a...
Suppose that X, Y, and Z are independent, with E[X]=E[Y]=E[Z]=2, and E[X2]=E[Y2]=E[Z2]=5. Find cov(XY,XZ). (Enter a numerical answer.) cov(XY,XZ)= Let X be a standard normal random variable. Another random variable is determined as follows. We flip a fair coin (independent from X). In case of Heads, we let Y=X. In case of Tails, we let Y=−X. Is Y normal? Justify your answer. yes no not enough information to determine Compute Cov(X,Y). Cov(X,Y)= Are X and Y independent? yes no not...
1- The future lifetimes (in months) X and Y of two components of a machine have...
1- The future lifetimes (in months) X and Y of two components of a machine have the following joint pdf f(x,y)= (6/125,000) (50−x−y), if 0<x<50−y<50 0, elsewhere Calculate the probability that both components are still functioning 20 months from now. 2- Let X and Y be two continuous random variables with joint pdf f(x,y)= (8/3)xy, if0<x<1,x<y<2x 0, elsewhere (i) Find the marginal pdf f1(x) of X. Specify its support. (ii) Find the marginal pdf f2(y) of Y . Specify its...
1. Suppose we have the following relation defined on Z. We say that a ∼ b...
1. Suppose we have the following relation defined on Z. We say that a ∼ b iff 2 divides a + b. (a) Prove that the relation ∼ defines an equivalence relation on Z. (b) Describe the equivalence classes under ∼ . 2. Suppose we have the following relation defined on Z. We say that a ' b iff 3 divides a + b. It is simple to show that that the relation ' is symmetric, so we will leave...
5. Suppose that the incenter I of ABC is on the triangle’s Euler line. Show that...
5. Suppose that the incenter I of ABC is on the triangle’s Euler line. Show that the triangle is isosceles. 6. Suppose that three circles of equal radius pass through a common point P, and denote by A, B, and C the three other points where some two of these circles cross. Show that the unique circle passing through A, B, and C has the same radius as the original three circles. 7. Suppose A, B, and C are distinct...