Question

1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T...

1. V is a subspace of inner-product space R3, generated by vector

u =[2 2 1]T and v =[ 3 2 2]T.

(a) Find its orthogonal complement space V ;

(b) Find the dimension of space W = V+ V;

(c) Find the angle θ between u and v and also the angle β between u and normalized x with respect to its 2-norm.

(d) Considering v’ = av, a is a scaler, show the angle θ between u and v’

a,b,c, and d

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A2. Let v be a fixed vector in an inner product space V. Let W be...
A2. Let v be a fixed vector in an inner product space V. Let W be the subset of V consisting of all vectors in V that are orthogonal to v. In set language, W = { w LaTeX: \in ∈V: <w, v> = 0}. Show that W is a subspace of V. Then, if V = R3, v = (1, 1, 1), and the inner product is the usual dot product, find a basis for W.
Let W be a subspace of a f.d. inner product space V and let PW be...
Let W be a subspace of a f.d. inner product space V and let PW be the orthogonal projection of V onto W. Show that the characteristic polynomial of PW is (t-1)^dimW t^(dimv-dimw)
1) Find ||u|| for the standard inner product defined in R3 , where u = (0,4,5)....
1) Find ||u|| for the standard inner product defined in R3 , where u = (0,4,5). 2) provided u = (5,-5,0,5) and v = (0,6,7,-5), solve 4w = u-v for w. 3) True or false: The set W = {(x1,11, x3 ): x1 and x3 are real numbers} is a subspace of R3 with the standard operations.
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉 ∈ R for x, y ∈ V . (a) (3points) Let λ∈R with λ>0. Show that 〈x,y〉′ = λ〈x,y〉, for x,y ∈ V, (b) (2 points) Let T : V → V be a linear operator, such that 〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V. Show that T is one-to-one. (c) (2 points) Recall that the norm of a vector x ∈ V...
Question 1:  Is there a vector space that can not be an inner product space? Justify your...
Question 1:  Is there a vector space that can not be an inner product space? Justify your answer. Part 2: Suppose that u and v are two non-orthogonal vectors in an inner product space V,< , >. Question 2: Can we modify the inner product < , > to a new inner product so that the two vectors become orthogonal? Justify your answer.
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) ,...
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) , for all u,v load to V. hint : you may use the Cauchy-Schwars inquality: |{u,v}|,= ||u||*||v||.
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
Suppose 〈 , 〉 is an inner product on a vector space V . Show that...
Suppose 〈 , 〉 is an inner product on a vector space V . Show that no vectors u and v exist such that ∥u∥ = 1, ∥v∥ = 2, and 〈u, v〉 = −3.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT