Question

Consider function f (n) = 4n^2 + 8n + 329. 1. prove that f(n) = Ω(n)...

Consider function f (n) = 4n^2 + 8n + 329.

1. prove that f(n) = Ω(n)

2. prove that f(n) = Ω(n^2)

Homework Answers

Answer #1

any problem pls comment

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider function f (n) = 3n^2 + 9n + 554. Prove f(n) = O(n^2) Prove that...
Consider function f (n) = 3n^2 + 9n + 554. Prove f(n) = O(n^2) Prove that f(n) = O(n^3)
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
Consider the following function : F 1 = 2, F n = (F n-1 ) 2...
Consider the following function : F 1 = 2, F n = (F n-1 ) 2 , n ≥ 2 i. What is the complexity of the algorithm that computes F n using the recursive definition given above. ii. Describe a more efficient algorithm to calculate F n and give its running time.
Let n ∈ N and f : [n] → [n] a function. Prove that f is...
Let n ∈ N and f : [n] → [n] a function. Prove that f is a surjection if and only if f is an injection.
f:N->N f(1)=3 and f(2)=5 and for each n>2, f(n)=f(n-1)+f(n-2). Please prove that for each n in...
f:N->N f(1)=3 and f(2)=5 and for each n>2, f(n)=f(n-1)+f(n-2). Please prove that for each n in N, f(n)*f(n+2)=(f(n+1))^2+(-1)^(n) using induction.
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n...
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n = 1 Step 1 To decide whether ∞ (−1)n 8n − 5 9n + 5 n = 1 converges, we must find lim n → ∞ 8n − 5 9n + 5 . The highest power of n in the fraction is 1    1 . Step 2 Dividing numerator and denominator by n gives us lim n → ∞ 8n − 5 9n +...
Prove by induction that 7 + 11 + 15 + … + (4n + 3) =...
Prove by induction that 7 + 11 + 15 + … + (4n + 3) = ( n ) ( 2n + 5 ) Prove by induction that 1 + 5 + 25 + … + 5n-1 = ( 1/4 )( 5n – 1 ) Prove by strong induction that an = 3 an-1 + 5 an-2 is even with a0 = 2 and a1 = 4.
. Let f : Z → N be function. a. Prove or disprove: f is not...
. Let f : Z → N be function. a. Prove or disprove: f is not strictly increasing. b. Prove or disprove: f is not strictly decreasing.
Let f(n) be a negligible function and k a positive integer. Prove the following: (a) f(√n)...
Let f(n) be a negligible function and k a positive integer. Prove the following: (a) f(√n) is negligible. (b) f(n/k) is negligible. (c) f(n^(1/k)) is negligible.
Consider the function f (t)= (−1)n if n < t ≤ n + 1 and where...
Consider the function f (t)= (−1)n if n < t ≤ n + 1 and where n ∈ N denotes a non-negative integer. Calculate: a. f ( 1 ) b. f ( 11.5 ) c. f (sqrt(1000000000000000000000000000000000012+1)) d. limt-> infinityf2(t)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT