Question

Consider function f (n) = 4n^2 + 8n + 329. 1. prove that f(n) = Ω(n)...

Consider function f (n) = 4n^2 + 8n + 329.

1. prove that f(n) = Ω(n)

2. prove that f(n) = Ω(n^2)

Homework Answers

Answer #1

any problem pls comment

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider function f (n) = 3n^2 + 9n + 554. Prove f(n) = O(n^2) Prove that...
Consider function f (n) = 3n^2 + 9n + 554. Prove f(n) = O(n^2) Prove that f(n) = O(n^3)
1.)Prove that f(n) = Ω(g(n)), given: F(n) = n2 ; g(n) = n2 + n 2.)Prove...
1.)Prove that f(n) = Ω(g(n)), given: F(n) = n2 ; g(n) = n2 + n 2.)Prove that f(n) = θ(g(n)) for f(n) = n2 + n; g(n) = 5n2
1. Let n be an integer. Prove that n2 + 4n is odd if and only...
1. Let n be an integer. Prove that n2 + 4n is odd if and only if n is odd? PROVE 2. Use a table to express the value of the Boolean function x(z + yz).
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
Consider the following function : F 1 = 2, F n = (F n-1 ) 2...
Consider the following function : F 1 = 2, F n = (F n-1 ) 2 , n ≥ 2 i. What is the complexity of the algorithm that computes F n using the recursive definition given above. ii. Describe a more efficient algorithm to calculate F n and give its running time.
Let n ∈ N and f : [n] → [n] a function. Prove that f is...
Let n ∈ N and f : [n] → [n] a function. Prove that f is a surjection if and only if f is an injection.
f:N->N f(1)=3 and f(2)=5 and for each n>2, f(n)=f(n-1)+f(n-2). Please prove that for each n in...
f:N->N f(1)=3 and f(2)=5 and for each n>2, f(n)=f(n-1)+f(n-2). Please prove that for each n in N, f(n)*f(n+2)=(f(n+1))^2+(-1)^(n) using induction.
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n...
Test the series for convergence or divergence. ∞ (−1)n 8n − 5 9n + 5 n = 1 Step 1 To decide whether ∞ (−1)n 8n − 5 9n + 5 n = 1 converges, we must find lim n → ∞ 8n − 5 9n + 5 . The highest power of n in the fraction is 1    1 . Step 2 Dividing numerator and denominator by n gives us lim n → ∞ 8n − 5 9n +...
Prove that when n is an integer, 4n + 3 is never the perfect square of...
Prove that when n is an integer, 4n + 3 is never the perfect square of an integer.
. Let f : Z → N be function. a. Prove or disprove: f is not...
. Let f : Z → N be function. a. Prove or disprove: f is not strictly increasing. b. Prove or disprove: f is not strictly decreasing.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT