Question

For any subset S ⊂ V show that span(S) is the smallest subspace of V containing...

For any subset S ⊂ V show that span(S) is the smallest subspace of V containing S. (Hint: This is asking you to prove several things. Look over the proof that U1+. . .+Um is the smallest subspace containing U1, . . . , Um.)

Homework Answers

Answer #1

if you have any difficulty with the solution, please ask in comment box. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For a nonempty subset S of a vector space V , define span(S) as the set...
For a nonempty subset S of a vector space V , define span(S) as the set of all linear combinations of vectors in S. (a) Prove that span(S) is a subspace of V . (b) Prove that span(S) is the intersection of all subspaces that contain S, and con- clude that span(S) is the smallest subspace containing S. Hint: let W be the intersection of all subspaces containing S and show W = span(S). (c) What is the smallest subspace...
Definition. Let S ⊂ V be a subset of a vector space. The span of S,...
Definition. Let S ⊂ V be a subset of a vector space. The span of S, span(S), is the set of all finite linear combinations of vectors in S. In set notation, span(S) = {v ∈ V : there exist v1, . . . , vk ∈ S and a1, . . . , ak ∈ F such that v = a1v1 + . . . + akvk} . Note that this generalizes the notion of the span of a...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
A vector space V and a subset S are given. Determine if S is a subspace...
A vector space V and a subset S are given. Determine if S is a subspace of V by determining which conditions of the definition of a subspace are satisfied. (Select all that apply.) V = C[−4, 4] and S = P. S contains the zero vector. S is closed under vector addition. S is closed under scalar multiplication. None of these
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that...
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that U is a subspace if and only if cv + w ∈ U for any c ∈ F and any v, w ∈ U b)Give an example to show that the union of two subspaces of V is not necessarily a subspace.
Let Y be a subspace of X and let S be a subset of Y. Show...
Let Y be a subspace of X and let S be a subset of Y. Show that the closure of S in Y coincides with the intersection between Y and the closure of S in X.
Let S be a set in a vector space V and v any vector. Prove that...
Let S be a set in a vector space V and v any vector. Prove that span(S) = span(S ∪ {v}) if and only if v ∈ span(S).
9. Let S and T be two subspaces of some vector space V. (b) Define S...
9. Let S and T be two subspaces of some vector space V. (b) Define S + T to be the subset of V whose elements have the form (an element of S) + (an element of T). Prove that S + T is a subspace of V. (c) Suppose {v1, . . . , vi} is a basis for the intersection S ∩ T. Extend this with {s1, . . . , sj} to a basis for S, and...
Show the rectangular box with fixed volume V=27 and smallest possible surface area is a cube....
Show the rectangular box with fixed volume V=27 and smallest possible surface area is a cube. Hint: if the sides are x, y, and z, then V=xyz and surface area is given by S=2xy+2yz+2xz. Use the constraint in volume to turn the problem into one of two variables.
1. A function + : S × S → S for a set S is said...
1. A function + : S × S → S for a set S is said to provide an associative binary operation on S if r + (s + t) = (r + s) +t for all r, s, t ∈ S. Show that any associative binary operation + on a set S can have at most one “unit” element, i.e. an element u ∈ S such that (*) s + u = s = u + s for all...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT