Question

Let a, b and c be real numbers with a does not equal to 0 and...

Let a, b and c be real numbers with a does not equal to 0 and b^2<4ac. Show that the two roots ax^2+ bx + c =0 are complex conjugates of each other.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1....
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1. Deduce that either f(x) factors in R[x] as the product of three degree-one polynomials, or f(x) factors in R[x] as the product of a degree-one polynomial and an irreducible degree-two polynomial. 2.Deduce that either f(x) has three real roots (counting multiplicities) or f(x) has one real root and two non-real (complex) roots that are complex conjugates of each other.
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then...
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then the cubic equation x^3 + ax^2 + bx + c = 0 has precisely one real root
The roots (solutions) to the quadratic equation ax2 +bx+c = 0 is given by the well-known...
The roots (solutions) to the quadratic equation ax2 +bx+c = 0 is given by the well-known formula x = 2a −b ± √b −4ac 2 Write a python program that takes the three coefficients a, b, and c as input, computes and displays the solutions according to the aforementioned formula. Note the ± in the numerator means there are two answers. But this will not apply if a is zero, so that condition must be checked separately; design your program...
Given r_1 and r_2 are the roots of the quadratic equation ax^2 + bx + c...
Given r_1 and r_2 are the roots of the quadratic equation ax^2 + bx + c = 0, express (b^2?4ac)/2a in terms of r_1 and r_2. Re-write the quadratic formula in terms of r_1 + r_2 and and r_1 ? r_2.
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be...
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be in R 17 , c be in R 20, and 0 be the vector with all zero entries. Show that each of the following statements implies the other. (a) Bx = 0 has only the trivial solution x = 0 n R 17, then (b) If Bx = c has a solution for some vector c in R 20, then the solution is unique.
Let a, b, c, d be real numbers with a < b and c < d....
Let a, b, c, d be real numbers with a < b and c < d. (a) Show that there is a one to one and onto function from the interval (a, b) to the interval (c, d). (b) Show that there is a one to one and onto function from the interval (a, b] to the interval (c, d]. (c) Show that there is a one to one and onto function from the interval (a, b) to R.
Let p and q be two real numbers with p > 0. Show that the equation...
Let p and q be two real numbers with p > 0. Show that the equation x^3 + px +q= 0 has exactly one real solution. (Hint: Show that f'(x) is not 0 for any real x and then use Rolle's theorem to prove the statement by contradiction)
Prove: Let S be a bounded set of real numbers and let a > 0. Define...
Prove: Let S be a bounded set of real numbers and let a > 0. Define aS = {as : s ∈ S}. Show that inf(aS) = a*inf(S).
1 point) Let A, B, and C be independent random variables, uniformly distributed over [0,5], [0,15],...
1 point) Let A, B, and C be independent random variables, uniformly distributed over [0,5], [0,15], and [0,2] respectively. What is the probability that both roots of the equation Ax2+Bx+C=0 are real?
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as...
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as the real numbers between 0 and pi/2. (Hint: Find a simple bijection from one set to the other.) b) Show that the real numbers between 0 and pi/2 have the same cardinality as all nonnegative real numbers. (Hint: What is a function whose graph goes from 0 to positive infinity as x goes from 0 to pi/2?) c) Use parts a and b to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT