Question

. Let C be the curve x2+y2=1 lying in the plane z = 1. Let ?=(?−?)?̂+??...

. Let C be the curve x2+y2=1 lying in the plane z = 1. Let ?=(?−?)?̂+?? =

(a) Calculate ∇×?

(b) Calculate ∫?∙?? F · ds using a parametrization of C and a chosen orientation for C.

(c) Write C = ∂S for a suitably chosen surface S and, applying Stokes’ theorem, verify your answer in (b)

(d) Consider the sphere with radius √22 and center the origin. Let S’ be the part of the sphere that is above the curve (i.e., lies in the region z ≥ 1), and has C as boundary. Evaluate the surface integral of ∇ × F over S′. Specify the orientation you are using for S′.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 10. Let F = <y, z − x, 0> and let S be the surface...
Problem 10. Let F = <y, z − x, 0> and let S be the surface z = 4 − x^2 − y^2 for z ≥ 0, oriented by outward-pointing normal vectors. a. Calculate curl(F). b. Calculate Z Z S curl(F) · dS directly, i.e., evaluate it as a surface integral. c. Calculate Z Z S curl(F) · dS using Stokes’ Theorem, i.e., evaluate instead the line integral I ∂S F · ds.
Calculate the line integral of the vector field ?=〈?,?,?2+?2〉F=〈y,x,x2+y2〉 around the boundary curve, the curl of...
Calculate the line integral of the vector field ?=〈?,?,?2+?2〉F=〈y,x,x2+y2〉 around the boundary curve, the curl of the vector field, and the surface integral of the curl of the vector field. The surface S is the upper hemisphere ?2+?2+?2=36, ?≥0x2+y2+z2=36, z≥0 oriented with an upward‑pointing normal. (Use symbolic notation and fractions where needed.) ∫?⋅??=∫CF⋅dr= curl(?)=curl(F)= ∬curl(?)⋅??=∬Scurl(F)⋅dS=
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 8)j + zk. Find the...
Let F(x, y, z) = z tan−1(y2)i + z3 ln(x2 + 8)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 6 that lies above the plane z = 5 and is oriented upward.    S F · dS =  
Let C be the closed, piecewise smooth curve formed by traveling in straight lines between the...
Let C be the closed, piecewise smooth curve formed by traveling in straight lines between the points (0, 0, 0), (2, 0, 4), (3, 2, 6), (1, 2, 2), and back to the origin, in that order. (Thus the surface S lying interior to C is contained in the plane z = 2x.) Use Stokes' theorem to evaluate the following integral. C (z cos(x)) dx + (x^2yz) dy + (yz) dz
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 4 in the first octant, with orientation toward the origin
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 25 in the first octant, with orientation toward the origin
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i - z j + y k S is the part of the sphere x2 + y2 + z2 = 81 in the first octant, with orientation toward the origin.
Let S be the boundary of the solid bounded by the paraboloid z=x^2+y^2 and the plane...
Let S be the boundary of the solid bounded by the paraboloid z=x^2+y^2 and the plane z=16 S is the union of two surfaces. Let S1 be a portion of the plane and S2 be a portion of the paraboloid so that S=S1∪S2 Evaluate the surface integral over S1 ∬S1 z(x^2+y^2) dS= Evaluate the surface integral over S2 ∬S2 z(x^2+y^2) dS= Therefore the surface integral over S is ∬S z(x^2+y^2) dS=
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
(1 point) Consider the paraboloid z=x2+y2. The plane 5x−3y+z−3=0 cuts the paraboloid, its intersection being a...
(1 point) Consider the paraboloid z=x2+y2. The plane 5x−3y+z−3=0 cuts the paraboloid, its intersection being a curve. Find "the natural" parametrization of this curve. Hint: The curve which is cut lies above a circle in the xy-plane which you should parametrize as a function of the variable t so that the circle is traversed counterclockwise exactly once as t goes from 0 to 2*pi, and the paramterization starts at the point on the circle with largest x coordinate. Using that...