For each equation, write a brief program to compute and print eight steps of Newton's method for finding a positive root (Preferably in Matlab or Python).
a. x=2sinx
b. x^3=sinx+7
c. sinx=1-x
d. x^5+x^2=1+7x^3 for x>=2
A)
clc
clear all
x(1)=1;
iter(1)=0;
for i=1:7
f(i)= x(i)-2*sin(x(i));
der_f(i)=1-2*cos(x(i));
x(i+1)=x(i)-f(i)/der_f(i);
iter(i+1)=iter(i)+1;
end;
fprintf("%i %f", iter, x);
B)
clc
clear all
x(1)=1;
iter(1)=0;
for i=1:7
f(i)= x(i).^3-sin(x(i))-7;
der_f(i)=3*x(i).^2-cos(x(i));
x(i+1)=x(i)-f(i)/der_f(i);
iter(i+1)=iter(i)+1;
end;
fprintf("%i %f", iter, x);
C).
clc
clear all
x(1)=1;
iter(1)=0;
for i=1:7
f(i)= sin(x(i))-1-x(i);
der_f(i)=cos(x(i))-1;
x(i+1)=x(i)-f(i)/der_f(i);
iter(i+1)=iter(i)+1;
end;
fprintf("%i %f", iter, x);
D).
clc
clear all
x(1)=2;
iter(1)=0;
for i=1:7
f(i)= x(i).^5+x(i).^2-1-7*x(i).^3;
der_f(i)=5*x(i).^4+2*x(i)-21*x(i).^2
x(i+1)=x(i)-f(i)/der_f(i);
iter(i+1)=iter(i)+1;
end;
fprintf("%i %f", iter, x);
Get Answers For Free
Most questions answered within 1 hours.