Question

Alice and Bob have 9 coins, each with probability of a head equal to p =...

Alice and Bob have 9 coins, each with probability of a head equal to p = .6. Bob tosses 5 coins, while Alice tosses the remaining 4 coins. Assuming that all tosses are independent, compute the probability that Bob gets more heads than Alice.

Homework Answers

Answer #1

Note :: The probability is calculated using the R-software by the codes:

p=function(x) dbinom(x,5,0.6)
q=function(x) dbinom(x,4,0.6)
prob=0
for(i in 2:5){
{for(j in 1:(i-1))
prob=prob+p(i)*q(j)}}
prob

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Alice and Bob play the following game. They toss 5 fair coins. If all tosses are...
Alice and Bob play the following game. They toss 5 fair coins. If all tosses are Heads,Bob wins. If the number of Heads tosses is zero or one, Alice wins. Otherwise they repeat,tossing five coins on each round, until the game is decided. (a) Compute the expectednumber of coin tosses needed to decide the game. (b) Compute the probability that Alicewins.
(10 pts) Alice and Bob are playing a dart game. Each person shoots 3 times. Assume...
(10 pts) Alice and Bob are playing a dart game. Each person shoots 3 times. Assume all shots are independent and Alice hits the target with probability 0.8 for each shot, while Bob hits the target with probability 0.6. Calculate the probabilities of the following events. (a) Alice hits the target no less than twice. (b) Bob hits the target for the first time in the third shot. (c) Alice hits the target more times than Bob. (d) Alice hits...
3. Alice and Bob are practicing their basketball free throws. Alice sinks it with probability a...
3. Alice and Bob are practicing their basketball free throws. Alice sinks it with probability a > 0 on each try, Bob is successful with probability b > 0 each time. The outcomes of their attempts are all independent from each other. Let A be the number of Alice’s tries until her first success. Let B be the same for Bob. Let C be equal to 1 if Alice gets to score with fewer attempts, 2 if Bob gets to...
We toss n coins and each one shows up heads with probability p, independent of the...
We toss n coins and each one shows up heads with probability p, independent of the other coin tosses. Each coin which shows up heads is tossed again. What is the probability mass function of the number of heads obtained after the second round of coin tossing?
A coin is tossed repeatedly; on each toss, a head is shown with probability p or...
A coin is tossed repeatedly; on each toss, a head is shown with probability p or a tail with probability 1 − p. All tosses are independent. Let E denote the event that the first run of r successive heads occurs earlier than the first run of s successive tails. Let A denote the outcome of the first toss. Show that P(E|A=head)=pr−1 +(1−pr−1)P(E|A=tail). Find a similar expression for P (E | A = tail) and then find P (E).
Alice, Bob, and Charlie each pick random numbers from the set {1, 2, 3, 4, 5,...
Alice, Bob, and Charlie each pick random numbers from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} independently. (a) What is the probability that Alice and Bob pick the same number? (b) What is the probability that Alice, Bob, and Charlie all pick even numbers? (c) What is the probability Alice’s pick is at most 4 (including 4) OR Bob’s pick is at least 8? (d) Given that Alice picks 8, what is the probability that...
A weighted coin has a probability of 0.6 of getting a head and 0.4 of getting...
A weighted coin has a probability of 0.6 of getting a head and 0.4 of getting a tail. (a) In a series of 30 independent tosses what is the probability of getting the same number of heads as tails? [2] (b) Find the probability of getting more than 7 heads in 10 tosses? [3] (c) Find the probability of 4 consecutive tails followed by 2 tails in the next 6 tosses. [2]
Each game costs $5 and four COINS are flipped simultaneously. If you get one head you...
Each game costs $5 and four COINS are flipped simultaneously. If you get one head you get $2, if you get two heads you get $4, if you get three heads you get $10. Question: create the experimental probability distribution, expected value and bar graph. Compare the distribution, bar graph and expected value to the theoretical. Four Coin Filp :1-100 Three COINS out of a hundred trials are heads with a probability of 25 Two COINS out of a hundred...
Q1. Let p denote the probability that the coin will turn up as a Head when...
Q1. Let p denote the probability that the coin will turn up as a Head when tossed. Given n independent tosses of the same coin, what is the probability distribution associated with the number of Head outcomes observed? Q2. Suppose you have information that a coin in your possession is not a fair coin, and further that either Pr(Head|p) = p is certain to be equal to either p = 0.33 or p = 0.66. Assuming you believe this information,...
Consider two agents, Alice and Bob, who are each capable of producing two goods cornbread and...
Consider two agents, Alice and Bob, who are each capable of producing two goods cornbread and bowls of chili. Alice and Bob have constant opportunity cost technology for producing these two goods. The table below the maximum they can produce of the two goods if they devote themselves to only producing that good. The format of this table is similar to what we did in class. Cornbread Chili Alice 20 15 Bob 6 3 In other words, if Bob devoted...