Question

Give the definition of group. Show that the identity (or neutral) element of G is unique....

Give the definition of group. Show that the identity (or neutral) element of G is
unique. Moreover, show that the inverse of an element g 2 G is unique as well.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Is it possible for a group G to contain a non-identity element of finite order and...
Is it possible for a group G to contain a non-identity element of finite order and also an element of infinite order? If yes, illustrate with an example. If no, give a convincing explanation for why it is not possible.
2. Let a and b be elements of a group, G, whose identity element is denoted...
2. Let a and b be elements of a group, G, whose identity element is denoted by e. Prove that ab and ba have the same order. Show all steps of proof.
1. Let a and b be elements of a group, G, whose identity element is denoted...
1. Let a and b be elements of a group, G, whose identity element is denoted by e. Assume that a has order 7 and that a^(3)*b = b*a^(3). Prove that a*b = b*a. Show all steps of proof.
Another way to show that in a free group, any non identity element is of infinite...
Another way to show that in a free group, any non identity element is of infinite order
Let G be a group. g be an element of G. if <g^2>=<g^4> show that order...
Let G be a group. g be an element of G. if <g^2>=<g^4> show that order of g is finite.
suppose every element of a group G has order dividing 2. Show that G is an...
suppose every element of a group G has order dividing 2. Show that G is an abelian group. There is another question on this, but I can't understand the writing at all...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K must be a subgroup of G. (b) Give an example to show that H ∪ K is not necessarily a subgroup of G. Note: Your answer to part (a) should be a general proof that the set H ∩ K is closed under the operation of G, includes the identity element of G, and contains the inverse in G of each of its elements,...
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If B is an element of G as well show that aH and bH contain the same number of elements in G.
(A) Show that if a2=e for all elements a in a group G, then G must...
(A) Show that if a2=e for all elements a in a group G, then G must be abelian. (B) Show that if G is a finite group of even order, then there is an a∈G such that a is not the identity and a2=e. (C) Find all the subgroups of Z3×Z3. Use this information to show that Z3×Z3 is not the same group as Z9. (Abstract Algebra)
Let G be a cyclic group; an element g ∈ G is called a generator of...
Let G be a cyclic group; an element g ∈ G is called a generator of G if G<g>. Let φ : G → G be an endomorphism of G, and let g be a generator of G. Show that φ is an automorphism if and only if φ(g) is a generator of G. Use this to find Aut(Z).