Question

are they logically equivalent (show how) truth table or in word:: a) p —> ( q...

are they logically equivalent (show how) truth table or in word::
a) p —> ( q —> r ) and ( p -> q) —> r

b) p^ (q v r ) and ( p ^ q) v ( p ^ r )




Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Show that ¬p → (q → r) and q → (p ∨ r) are logically...
1) Show that ¬p → (q → r) and q → (p ∨ r) are logically equivalent. No truth table and please state what law you're using. Also, please write neat and clear. Thanks 2) .Show that (p ∨ q) ∧ (¬p ∨ r) → (q ∨ r) is a tautology. No truth table and please state what law you're using. Also, please write neat and clear.
1. Construct a truth table for: (¬p ∨ (p → ¬q)) → (¬p ∨ ¬q) 2....
1. Construct a truth table for: (¬p ∨ (p → ¬q)) → (¬p ∨ ¬q) 2. Give a proof using logical equivalences that (p → q) ∨ (q → r) and (p → r) are not logically equivalent. 3.Show using a truth table that (p → q) and (¬q → ¬p) are logically equivalent. 4. Use the rules of inference to prove that the premise p ∧ (p → ¬q) implies the conclusion ¬q. Number each step and give the...
Let P and Q be statements: (a) Use truth tables to show that ∼ (P or...
Let P and Q be statements: (a) Use truth tables to show that ∼ (P or Q) = (∼ P) and (∼ Q). (b) Show that ∼ (P and Q) is logically equivalent to (∼ P) or (∼ Q). (c) Summarize (in words) what we have learned from parts a and b.
Use a truth table to determine whether the two statements are equivalent. ~p->~q, q->p Construct a...
Use a truth table to determine whether the two statements are equivalent. ~p->~q, q->p Construct a truth table for ~p->~q Construct a truth table for q->p
Are the statement forms P∨((Q∧R)∨ S) and ¬((¬ P)∧(¬(Q∧ R)∧ (¬ S))) logically equivalent? I found...
Are the statement forms P∨((Q∧R)∨ S) and ¬((¬ P)∧(¬(Q∧ R)∧ (¬ S))) logically equivalent? I found that they were not logically equivalent but wanted to check. Also, does the negation outside the parenthesis on the second statement form cancel out with the negation in front of P and in front of (Q∧ R)∧ (¬ S)) ?
Show the following are not logically equivalent: ∀xP (x) ∨ ∀xQ(x) and ∀x(P (x) ∨ Q(x)).
Show the following are not logically equivalent: ∀xP (x) ∨ ∀xQ(x) and ∀x(P (x) ∨ Q(x)).
Use a truth table to determine whether the following argument is valid. p →q ∨ ∼r...
Use a truth table to determine whether the following argument is valid. p →q ∨ ∼r q → p ∧ r ∴ p →r
Use two truth tables to show that the pair of compound statements are equivalent. p ∨...
Use two truth tables to show that the pair of compound statements are equivalent. p ∨ (q ∧ ~p); p ∨ q p q p ∨ (q ∧ ~p) T T ? ? ? ? ? T F ? ? ? ? ? F T ? ? ? ? ? F F ? ? ? ? ? p ∨ q T ? T T ? F F ? T F ? F
Write a C++ program to construct the truth table of P || !(Q && R)
Write a C++ program to construct the truth table of P || !(Q && R)
[16pt] Which of the following formulas are semantically equivalent to p → (q ∨ r): For...
[16pt] Which of the following formulas are semantically equivalent to p → (q ∨ r): For each formula from the following (denoted by X) that is equivalent to p → (q ∨ r), prove the validity of X « p → (q ∨ r) using natural deduction. For each formula that is not equivalent to p → (q ∨ r), draw its truth table and clearly mark the entries that result in the inequivalence. Assume the binding priority used in...