Question

PROVE: If S = ~s1, . . . , ~sm is a system of vectors and...

PROVE: If S = ~s1, . . . , ~sm is a system of vectors and B = ~v1, . . . , ~vn is a spanning system of a vector space V , then if every ~vi ∈ B can be written as a linear combination of elements from S, then S is also a spanning system of a vector space V .

Homework Answers

Answer #1

All the best

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V , and if ⃗v4 ∈ V , then {⃗v1, ⃗v2, ⃗v3, ⃗v4} is also a linear dependent set of vectors in V . 2. Prove that if {⃗v1,⃗v2,...,⃗vr} is a linear dependent set of vectors in V, and if⃗ vr + 1 ,⃗vr+2,...,⃗vn ∈V, then {⃗v1,⃗v2,...,⃗vn} is also a linear dependent set of vectors in V.
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that...
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that every vector w∈V can expressed in multiple ways as a linear combination of these generators.  
Write each vector as a linear combination of the vectors in S. (Use s1 and s2,...
Write each vector as a linear combination of the vectors in S. (Use s1 and s2, respectively, for the vectors in the set. If not possible, enter IMPOSSIBLE.) S = {(1, 2, −2), (2, −1, 1)} (a)    z = (−5, −5, 5) z = ? (b)    v = (−2, −6, 6) v = ? (c)    w = (−1, −17, 17) w = ? Show that the set is linearly dependent by finding a nontrivial linear combination of vectors in the set whose sum...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
Urgent! Write down the definition of what it means for one vector to be a linear...
Urgent! Write down the definition of what it means for one vector to be a linear combination of a collection of other vectors. Can a given vector v be written as a linear combination of vectors v1, v2, ...., vn in more than one way? Justify your answer. This is Linear Algebra
5. Prove or disprove the following statements. (a) Let L : V → W be a...
5. Prove or disprove the following statements. (a) Let L : V → W be a linear mapping. If {L(~v1), . . . , L( ~vn)} is a basis for W, then {~v1, . . . , ~vn} is a basis for V. (b) If V and W are both n-dimensional vector spaces and L : V → W is a linear mapping, then nullity(L) = 0. (c) If V is an n-dimensional vector space and L : V →...
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V....
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V. Then so are {v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
9. Let S and T be two subspaces of some vector space V. (b) Define S...
9. Let S and T be two subspaces of some vector space V. (b) Define S + T to be the subset of V whose elements have the form (an element of S) + (an element of T). Prove that S + T is a subspace of V. (c) Suppose {v1, . . . , vi} is a basis for the intersection S ∩ T. Extend this with {s1, . . . , sj} to a basis for S, and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT