Question

Let W be a subspace of a f.d. inner product space V and let PW be...

Let W be a subspace of a f.d. inner product space V and let PW be the orthogonal projection of V onto W. Show that the characteristic polynomial of PW is

(t-1)^dimW t^(dimv-dimw)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A2. Let v be a fixed vector in an inner product space V. Let W be...
A2. Let v be a fixed vector in an inner product space V. Let W be the subset of V consisting of all vectors in V that are orthogonal to v. In set language, W = { w LaTeX: \in ∈V: <w, v> = 0}. Show that W is a subspace of V. Then, if V = R3, v = (1, 1, 1), and the inner product is the usual dot product, find a basis for W.
Let V be an inner product space. Prove that if w⃗ is orthogonal to each of...
Let V be an inner product space. Prove that if w⃗ is orthogonal to each of the vectors in the set S = {⃗v1, ⃗v2, . . . , ⃗vm}, then w⃗ is also orthogonal to each of the vectors in the subspace W = SpanS of V .
Let W be the subspace of R4 spanned by the vectors a = 3e1 − 4e2...
Let W be the subspace of R4 spanned by the vectors a = 3e1 − 4e2 and b = e2 + e3 + e4. Find the orthogonal projection of the vector v = [2, 0, 1, 0] onto W. Then calculate the distance of the point v from the subspace W.
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T...
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T and v =[ 3 2 2]T. (a) Find its orthogonal complement space V┴ ; (b) Find the dimension of space W = V+ V┴; (c) Find the angle θ between u and v and also the angle β between u and normalized x with respect to its 2-norm. (d) Considering v’ = av, a is a scaler, show the angle θ’ between u and...
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T...
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T 〉 = 〈Sv1, T v1〉 + . . . + 〈Svn, T vn〉 for S,T ∈ L(V,W) is an inner product on L(V,W). Let S ∈ L(R^2) be given by S(x1, x2) = (x1 + x2, x2) and let I ∈ L(R^2) be the identity operator. Using the inner product defined in problem 1 for the standard basis and the dot product, compute 〈S,...
Let V be a subspace of Rn and let T : Rn → Rn be the...
Let V be a subspace of Rn and let T : Rn → Rn be the orthogonal projection onto V . Use geometric arguments to find all eigenvectors and eigenvalues of T . Is T diagonalisable?
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) ,...
let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) , for all u,v load to V. hint : you may use the Cauchy-Schwars inquality: |{u,v}|,= ||u||*||v||.
give an example of a finite dimensional real inner product space V, an operator T on...
give an example of a finite dimensional real inner product space V, an operator T on V and a subspace W of V such that W is a T-invariant subspace of V. is it possible to find such an example such that the operator T is self-adjoint?
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1,...
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1, x2) ? R^2. Show that (x2, ?x1) is orthogonal to v. b. Find all vectors (x, y, z) ? R^3 that are orthogonal (with the Euclidean inner product, i.e. dot product) to both (1, 3, ?2) and (2, 7, 5). C.Let V be an inner product space. Suppose u is orthogonal to both v and w. Prove that for any scalars c and d,...
T/ F : Let V be an inner product space with orthogonal basis B = {v1,...
T/ F : Let V be an inner product space with orthogonal basis B = {v1, . . . , vn}. Let [v]B = (1, 2, 2, 0, . . . , 0). Then ||v|| = 3. The ans is F , but I don't understand why. Please explain.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT