Question

Suppose you take a random non-empty subset of {1,2,3} (each equally likely). Then let X be...

Suppose you take a random non-empty subset of {1,2,3} (each equally likely). Then let X be the largest number in your subset and Y the smallest number.

a) What is the expected value of X + Y?

b) What is the variance of X?

c) Are these two random variables independent?

Homework Answers

Answer #1

if u have any questions please comment

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7. Let X and Y be two independent and identically distributed random variables with expected value...
7. Let X and Y be two independent and identically distributed random variables with expected value 1 and variance 2.56. (i) Find a non-trivial upper bound for P(| X + Y -2 | >= 1) (ii) Now suppose that X and Y are independent and identically distributed N(1;2.56) random variables. What is P(|X+Y=2| >= 1) exactly? Briefly, state your reasoning. (iii) Why is the upper bound you obtained in Part (i) so different from the exact probability you obtained in...
There are 6 closed boxes on the table. Two of them are non-empty, the rest 4...
There are 6 closed boxes on the table. Two of them are non-empty, the rest 4 are empty. You open boxes one at a time until you find a non-empty one. Let X be the number of boxes you open. (i) Find the probability mass function of X. (ii) Find E(X) and V ar(X). (iii) Suppose each non-empty box contains a $100 prize inside, but each empty box you open costs you $50. What is your expected gain or loss...
Let X and Y be independent and normally distributed random variables with waiting values E (X)...
Let X and Y be independent and normally distributed random variables with waiting values E (X) = 3, E (Y) = 4 and variances V (X) = 2 and V (Y) = 3. a) Determine the expected value and variance for 2X-Y Waiting value µ = Variance σ2 = σ 2 = b) Determine the expected value and variance for ln (1 + X 2) c) Determine the expected value and variance for X / Y
6. Let d= X -Y, where X and Y are random variables with normal distribution, and...
6. Let d= X -Y, where X and Y are random variables with normal distribution, and X and Y are independent random variables. Assume that you know both the mean and variance of   X and Y, if you have random samples from X and Y with equal sample size, what is the sampling distribution for the sample means of d(assuming X and Y are independent)?
Let X and Y be random variables, P(X = −1) = P(X = 0) = P(X...
Let X and Y be random variables, P(X = −1) = P(X = 0) = P(X = 1) = 1/3 and Y take the value 1 if X = 0 and 0 otherwise. Find the covariance and check if random variables are independent. How to check if they are independent since it does not mean that if the covariance is zero then the variables must be independent.
Let X and Y be independent random variables each of which attains any value between 1...
Let X and Y be independent random variables each of which attains any value between 1 and n with probability 1/n. Compute E(|X − Y|) and simplify your answer.
In each game played one is equally likely to either win or lose 1. Let X...
In each game played one is equally likely to either win or lose 1. Let X be your cumulative winnings if you use the strategy that quits playing if you win the first game, and plays two more games and then quits if you lose the first game. (a) Use Wald’s equation to determine E[X]. (b) Compute the probability mass function of X and use it to find E[X].
let x and y be the random variables that count the number of heads and the...
let x and y be the random variables that count the number of heads and the number of tails that come up when two fair coins are flipped. Show that X and Y are not independent.
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X +...
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X + Y and V = Y . (a) Find the joint PDF of U and V (b) Find the marginal PDF of U.
a. Suppose X and Y are independent Poisson random variables, each with expected value 2. Define...
a. Suppose X and Y are independent Poisson random variables, each with expected value 2. Define Z=X+Y. Find P(Z?3). b. Consider a Poisson random variable X with parameter ?=5.3, and its probability mass function, pX(x). Where does pX(x) have its peak value?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT