Question

Vectors u_{1}= [1,1,1] and u_{2}=[8,-7,-1] are
perpendicular. Find the orthogonal projection of
u_{3}=[65,-19,-31] onto the plane spanned by u_{1}
and u_{2}.

Answer #1

Linear Algebra:
Find the orthogonal projection of u3=[48,-12,108] onto the plane
spanned by u1= [2,7,2] and u2=[5,35,15].
Answer Choices: [15,3,-3] [35,23,-34] [5,1,3] [-22,28,38]
[24,21,-6] [24,0,6] [34,14,18] [21,22,-11] [57,12,27]
[39,37,15]

Use Gram-Schmidt process to transform the basis {u1, u2, u3},
where u1=(1,1,1), u2=(1,2,0), u3=(1,0,-1),:
a) for the Euclidean IPS. (IPS means inner product space)

Find the orthogonal projection of u onto the
subspace of R4 spanned by the vectors
v1, v2 and
v3.
u = (3, 4, 2, 4) ;
v1 = (3, 2, 3, 0),
v2 = (-8, 3, 6, 3),
v3 = (6, 3, -8, 3)
Let (x, y, z, w) denote the
orthogonal projection of u onto the given
subspace. Then, the components of the target orthogonal projection
are

A): compute projw j if u1=[-7,1,4] u2=[-1,1,-2],w=span{u1,u2}.
(u1 and u2 are orthogonal)
B): let u1=[1,1,1], u2=1/3 *[1,1,-2] and w=span{u1,u2}.
Construct an orthonormal basis for w.

Linear Algebra
Write x as the sum of two vectors, one is Span {u1,
u2, u3} and one in Span {u4}. Assume that
{u1,...,u4} is an orthogonal basis for
R4
u1 = [0, 1, -6, -1] , u2 = [5, 7, 1, 1],
u3 = [1, 0, 1, -6], u4 = [7, -5, -1, 1], x =
[14, -9, 4, 0]
x =
(Type an integer or simplified fraction for each matrix
element.)

Find the orthogonal projection of v=[−2,10,−16,−19] onto the
subspace W spanned by [-4,0,-2,1],[-4,-2,5,1],[3,-1,-3,4]

Consider the vector u1=(2,0,2), u2=(4,1,-1), u3=( 0,1,-5),
u4=(3,0,2)
a) Find the dimension and a basis for U= span{ u1,u2,u3,u4}
b) Does the vector u=(2,-1,4) belong to U. Justify!
c) Is it true that U = span{ u1,u2,u3} justify the answer!

U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto
v. Then write u as the sum of two orthogonal vectors, one in
span{U} and one orthogonal to U

1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form
lambda?I.
[[4.5,0][0,4.5]] [[5.5,0][0,5.5]] [[4,0][0,4]] [[3.5,0][0,3.5]] [[5,0][0,5]] [[1.5,0][0,1.5]]
2. Find the orthogonal projection of the matrix
[[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace
0.
[[-1,3][3,1]] [[1.5,1][1,-1.5]] [[0,4][4,0]] [[3,3.5][3.5,-3]] [[0,1.5][1.5,0]] [[-2,1.5][1.5,2]] [[0.5,4.5][4.5,-0.5]] [[-1,6][6,1]] [[0,3.5][3.5,0]] [[-1.5,3.5][3.5,1.5]]
3. Find the orthogonal projection of the matrix
[[1,5][1,2]] onto the space of anti-symmetric 2x2
matrices.
[[0,-1] [1,0]] [[0,2] [-2,0]] [[0,-1.5]
[1.5,0]] [[0,2.5] [-2.5,0]] [[0,0]
[0,0]] [[0,-0.5] [0.5,0]] [[0,1] [-1,0]]
[[0,1.5] [-1.5,0]] [[0,-2.5]
[2.5,0]] [[0,0.5] [-0.5,0]]
4. Let p be the orthogonal projection of
u=[40,-9,91]T onto the...

1.Find an equation for the plane that is perpendicular to the
line l(t) = (8, 0, 4)t + (5, −1, 1) and passes through (6, −1,
0).
2.Find an equation for the plane that is perpendicular to the
line l(t) = (−3, −6, 9)t + (0, 7, 1)and passes
through (2, 2, −1).

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 4 minutes ago

asked 7 minutes ago

asked 46 minutes ago

asked 49 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago