Question

Verify that u=[1,13]T is an eigenvector of the matrix [[ -8,1],[-13,6]]. Find the corresponding eigenvalue lambda.

Verify that u=[1,13]T is an eigenvector of the matrix [[ -8,1],[-13,6]]. Find the corresponding eigenvalue lambda.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
v is an eigenvector with eigenvalue 5 for the invertible matrix A. Is v an eigenvector...
v is an eigenvector with eigenvalue 5 for the invertible matrix A. Is v an eigenvector for A^-2? Show why/why not.
Let A be an n × n matrix and let x be an eigenvector of A...
Let A be an n × n matrix and let x be an eigenvector of A corresponding to the eigenvalue λ . Show that for any positive integer m, x is an eigenvector of Am corresponding to the eigenvalue λ m .
Given Eigenvalue 3, -2. Respective Eigenvector V1 = [1 1], V2= [1 -1]. Find the matrix...
Given Eigenvalue 3, -2. Respective Eigenvector V1 = [1 1], V2= [1 -1]. Find the matrix A
find the eigenvalues of the following matrix. then find the corresponding eigenvector(s) of one ofthose eigenvalues...
find the eigenvalues of the following matrix. then find the corresponding eigenvector(s) of one ofthose eigenvalues (pick your favorite). 1 -2 0 -1 1 -1 0 -2 1
The matrix A has an eigenvalue λ with an algebraic multiplicity of 5 and a geometric...
The matrix A has an eigenvalue λ with an algebraic multiplicity of 5 and a geometric multiplicity of 2. Does A have a generalised eigenvector of rank 3 corresponding to λ? What about a generalised eigenvector of rank 5?
Use the power method to determine the highest eigenvalue and corresponding eigenvector for [ (2-λ) 8...
Use the power method to determine the highest eigenvalue and corresponding eigenvector for [ (2-λ) 8 10; 8 (4-λ) 5; 10 5 (7-λ)] (By hand with handy formulas please)
Complex Eigenstuff Compute the eigenvalues and eigenvectors for the given matrix A. List the eigenvalues so...
Complex Eigenstuff Compute the eigenvalues and eigenvectors for the given matrix A. List the eigenvalues so the first one has negative imaginary part. Write the corresponding eigenvectors in the form [u+iv1]. If there is only one eigenvector, leave the entries for the second eigenvalue and eigenvector blank. A=[4 -3 3 4]
Let M=[[116,−48],[−48,44]]. Notice that 20 is an eigenvalue of M. Let U be an orthogonal matrix...
Let M=[[116,−48],[−48,44]]. Notice that 20 is an eigenvalue of M. Let U be an orthogonal matrix such that (U^−1)(M)(U) is diagonal, the first column of U has positive entries, and det(U)=1. Find (√20)⋅U.
Find the 3 * 3 matrix A corresponding to orthogonal projection onto the solution space of...
Find the 3 * 3 matrix A corresponding to orthogonal projection onto the solution space of the system below. 2x + 3y + z = 0; x - 3y - z = 0: Your solution should contain the following information: (a) The eigenvector(s) of A that is (are) contained in the solution space; (b) The eigenvector(s) of A that is (are) perpendicular to the solution space; (c) The corresponding eigenvalues for those eigenvectors.
Let lambda be an eigenvalue of A in X'=AX of multiplicity n. Find the general solution...
Let lambda be an eigenvalue of A in X'=AX of multiplicity n. Find the general solution of dx/dt = -5x +3y dy/dt = -3x + y Use eigenvalues, eigenvectors, and coefficients in your method.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT