Question

Prove that (Orbit-Stabilizer Theorem). Let G act on a finite set X and fix an x...

Prove that (Orbit-Stabilizer Theorem). Let G act on a finite set X and fix an x ∈ X.
Then |Orb(x)| = [G : Gx] (the index of Gx).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a group and let X = G. Define an action of G on...
Let G be a group and let X = G. Define an action of G on X by g · x = gx for any g ∈ G and x ∈ X. Complete and prove the following statements. (a) For any x ∈ G, the orbit Ox is . . . (b) For any x ∈ G, the stabilizer Gx is . . .
Let p be an prime. Use the action of G = GL2(Z/pZ) on (Z/pZ)2 and the...
Let p be an prime. Use the action of G = GL2(Z/pZ) on (Z/pZ)2 and the orbit-stabilizer theorem to compute the order of G (Given an element x ∈ X, the orbit O(x) of x is the subsetO(x)={g·x: g∈G}⊂X. Here, we write g · x for ρ(g)(x). The stabilizer of x ∈ X is the subset Gx ={g∈G: g·x=x}⊂G. This is a subgroup of G, and the orbit-stabilizer theorem says (in a particular form) that if G is a finite...
Let A be a finite set and let f be a surjection from A to itself....
Let A be a finite set and let f be a surjection from A to itself. Show that f is an injection. Use Theorem 1, 2 and corollary 1. Theorem 1 : Let B be a finite set and let f be a function on B. Then f has a right inverse. In other words, there is a function g: A->B, where A=f[B], such that for each x in A, we have f(g(x)) = x. Theorem 2: A right inverse...
Let G be a non-trivial finite group, and let H < G be a proper subgroup....
Let G be a non-trivial finite group, and let H < G be a proper subgroup. Let X be the set of conjugates of H, that is, X = {aHa^(−1) : a ∈ G}. Let G act on X by conjugation, i.e., g · (aHa^(−1) ) = (ga)H(ga)^(−1) . Prove that this action of G on X is transitive. Use the previous result to prove that G is not covered by the conjugates of H, i.e., G does not equal...
Let X be a non-empty finite set with |X| = n. Prove that the number of...
Let X be a non-empty finite set with |X| = n. Prove that the number of surjections from X to Y = {1, 2} is (2)^n− 2.
Prove the following: Theorem. Let X be a set and {Xi ⊆ X : i ∈...
Prove the following: Theorem. Let X be a set and {Xi ⊆ X : i ∈ I} be a partition of X. Then R = { (x1, x2) ∈ X × X : ∃i ∈ I,(x1 ∈ Xi) ∧ (x2 ∈ Xi) } is an equivalence relation on X.
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then...
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then the set (φ)^{-1}[{φ(a)}] ={x∈G|φ(x)} =φ(a) is the left coset aH of H, and is also the right coset Ha of H. Consequently, the two partitions of G into left cosets and into right cosets of H are the same
Let X be finite set . Let R be the relation on P(X). A,B∈P(X) A R...
Let X be finite set . Let R be the relation on P(X). A,B∈P(X) A R B Iff |A|=|B| prove R is an equivalence relation
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?