Question

Let (sn) ⊂ (0, +∞) be a sequence of real numbers. Prove that liminf 1/Sn =...

Let (sn) ⊂ (0, +∞) be a sequence of real numbers. Prove that

liminf 1/Sn = 1 / limsup Sn

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let (sn) be a sequence. Consider the set X consisting of real numbers x∈R having the...
Let (sn) be a sequence. Consider the set X consisting of real numbers x∈R having the following property: There exists N∈N s.t. for all n > N, sn< x. Prove that limsupsn= infX.
Claim: If (sn) is any sequence of real numbers with ??+1 = ??2 + 3?? for...
Claim: If (sn) is any sequence of real numbers with ??+1 = ??2 + 3?? for all n in N, then ?? ≥ 0 for all n in N. Proof: Suppose (sn) is any sequence of real numbers with ??+1 = ??2 + 3?? for all n in N. Let P(n) be the inequality statements ?? ≥ 0. Let k be in N and suppose P(k) is true: Suppose ?? ≥ 0. Note that ??+1 = ??2 + 3?? =...
Do not use binomial theorem for this!! (Real analysis question) a) Let (sn) be the sequence...
Do not use binomial theorem for this!! (Real analysis question) a) Let (sn) be the sequence defined by sn = (1 +1/n)^(n). Prove that sn is an increasing sequence with sn < 3 for all n. Conclude that (sn) is convergent. The limit of (sn) is referred to as e and is used as the base for natural logarithms. b)Use the result above to find the limit of the sequences: sn = (1 +1/n)^(2n) c)sn = (1+1/n)^(n-1)
suppose that the sequence (sn) converges to s. prove that if s > 0 and sn...
suppose that the sequence (sn) converges to s. prove that if s > 0 and sn >= 0 for all n, then the sequence (sqrt(sn)) converges to sqrt(s)
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as...
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as n approaches infinity. if and only if the limit of (xN) exists and xn approaches 0.
Telescoping Series. Let {an} ∞ n=0 be a sequence of real numbers converging to zero, limn→∞...
Telescoping Series. Let {an} ∞ n=0 be a sequence of real numbers converging to zero, limn→∞ an = 0. Let bn = an − an+1. Then the series X∞ n=0 bn converges.
Prove: Let S be a bounded set of real numbers and let a > 0. Define...
Prove: Let S be a bounded set of real numbers and let a > 0. Define aS = {as : s ∈ S}. Show that inf(aS) = a*inf(S).
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.
1. (a) Let S be a nonempty set of real numbers that is bounded above. Prove...
1. (a) Let S be a nonempty set of real numbers that is bounded above. Prove that if u and v are both least upper bounds of S, then u = v. (b) Let a > 0 be a real number. Define S := {1 − a n : n ∈ N}. Prove that if epsilon > 0, then there is an element x ∈ S such that x > 1−epsilon.