Question

Let S be the set of all real circles, defined by (x-a)^2 + (y-b)^2=r^2. Define d(C1,C2)...

Let S be the set of all real circles, defined by (x-a)^2 + (y-b)^2=r^2. Define d(C1,C2) = √((a1 − a2)^2 + (b1 − b2)^2 + (r1 − r2)^2 so that S is a metric space.

Prove that metric space S is NOT a complete metric space. Give a clear example.

Describe points of C\S as limits of the appropriate sequences of circles, where C is the completion of S.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let (X,d) be a metric space. Let E ⊆ X. Consider the set L of all...
Let (X,d) be a metric space. Let E ⊆ X. Consider the set L of all points in X which are limits of sequences contained in E. Prove or disprove the following: (a) L⊆E. (b) L⊆Ē. (c) L̄ ⊆ Ē.
Let F be a field (for instance R or C), and let P2(F) be the set...
Let F be a field (for instance R or C), and let P2(F) be the set of polynomials of degree ≤ 2 with coefficients in F, i.e., P2(F) = {a0 + a1x + a2x2 | a0,a1,a2 ∈ F}. Prove that P2(F) is a vector space over F with sum ⊕ and scalar multiplication defined as follows: (a0 + a1x + a2x^2)⊕(b0 + b1x + b2x^2) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x^2 λ (b0 +...
Let S be the collection of all sequences of real numbers and define a relation on...
Let S be the collection of all sequences of real numbers and define a relation on S by {xn} ∼ {yn} if and only if {xn − yn} converges to 0. a) Prove that ∼ is an equivalence relation on S. b) What happens if ∼ is defined by {xn} ∼ {yn} if and only if {xn + yn} converges to 0?
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that...
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that p(-1)=0. (a) Prove that S is a subspace of the vector space of all polynomials. (b) Find a basis for S. (c) What is the dimension of S? 6. Let ? ⊆ R! be the span of ?1 = (2,1,0,-1), ?2 =(1,2,-6,1), ?3 = (1,0,2,-1) and ? ⊆ R! be the span of ?1 =(1,1,-2,0), ?2 =(3,1,2,-2). Prove that V=W.
Fix a positive real number c, and let S = (−c, c) ⊆ R. Consider the...
Fix a positive real number c, and let S = (−c, c) ⊆ R. Consider the formula x ∗ y :=(x + y)/(1 + xy/c^2). (a)Show that this formula gives a well-defined binary operation on S (I think it is equivalent to say that show the domain of x*y is in (-c,c), but i dont know how to prove that) (b)this operation makes (S, ∗) into an abelian group. (I have already solved this, you can just ignore) (c)Explain why...
Define the relation S on RxR by (x,y)S(a,b) if and only if x^2 + y^2= a^2...
Define the relation S on RxR by (x,y)S(a,b) if and only if x^2 + y^2= a^2 + b^2. a) Prove S in an equivalence relation b) compute [(0,0)], [(1,2)], and [(-3,4)]. c) Draw a picture in R^2 representing these three equivalence classes.
1. Let W be the set of all [x y z}^t in R^3 such that xyz...
1. Let W be the set of all [x y z}^t in R^3 such that xyz = 0. Is W a subspace of R^3? 2. Let C^0 (R) denote the space of all continuous real-valued functions f(x) of x in R. Let W be the set of all continuous functions f(x) such that f(1) = 0. Is W a subspace of C^0(R)?
6. Let ?(?) be a continuous function defined for all real numbers, with?'(?)=(?−1)2(?−3)3(?−2) and ?''(?) =...
6. Let ?(?) be a continuous function defined for all real numbers, with?'(?)=(?−1)2(?−3)3(?−2) and ?''(?) = (? − 1)(3? − 7)(2? − 3)(? − 3)2. On what intervals is ? increasing and decreasing? Increasing on: Decreasing on: Find the x-coordinate(s) of all local minima and maxima of ?. Local min at x=__________________ Local max at x=_________________ c. On what intervals if ? concave up and concave down? Concave up on: Concave down on: d. Find the x-coordinate(s) of points of...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉 ∈ R for x, y ∈ V . (a) (3points) Let λ∈R with λ>0. Show that 〈x,y〉′ = λ〈x,y〉, for x,y ∈ V, (b) (2 points) Let T : V → V be a linear operator, such that 〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V. Show that T is one-to-one. (c) (2 points) Recall that the norm of a vector x ∈ V...
You are coding a simple game called Pig. Players take turns rolling a die. The die...
You are coding a simple game called Pig. Players take turns rolling a die. The die determines how many points they get. You may get points each turn your roll (turn points), you also have points for the entire game (grand points). The first player with 100 grand points is the winner. The rules are as follows: Each turn, the active player faces a decision (roll or hold): Roll the die. If it’s is a: 1: You lose your turn,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT