Question

Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) =...

Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) = ∪A∈F f −1 (A) f −1 (∩A∈F A) = ∩A∈F f −1 (A)

Show, if A, B ⊆ X, then f(A ∩ B) ⊆ f(A) ∩ f(B). Give an example, if possible, where strict inclusion holds.

Show, if C ⊆ X, then f −1 (f(C)) ⊇ C. Give an example, if possible, where strict inclusion holds.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) =...
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) = ∪A∈F f −1 (A) and  f −1 (∩A∈F A) = ∩A∈F f −1 (A).
Suppose S is a ring with p elements, where p is prime. a)Show that as an...
Suppose S is a ring with p elements, where p is prime. a)Show that as an additive group (ignoring multiplication), S is cyclic. b)Show that S is a commutative group.
suppose f is a differentiable function on interval (a,b) with f'(x) not equal to 1. show...
suppose f is a differentiable function on interval (a,b) with f'(x) not equal to 1. show that there exists at most one point c in the interval (a,b) such that f(c)=c
suppose that X ~ Bin(n, p) a. show that E(X^k)=npE((Y+1)^(k-1)) where Y ~ Bin(n-1, p) b....
suppose that X ~ Bin(n, p) a. show that E(X^k)=npE((Y+1)^(k-1)) where Y ~ Bin(n-1, p) b. use part (a) to find E(x^2)
Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets...
Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets of X. Show that f[∩i∈IAi ] ⊆ ∩i∈I f[Ai ]. Give an example, using two sets A1 and A2, to show that it’s possible for the LHS to be empty while the RHS is non-empty.
Suppose X is a random variable with pdf f(x)= {c(1-x) 0<x<1 {0 otherwise where c >...
Suppose X is a random variable with pdf f(x)= {c(1-x) 0<x<1 {0 otherwise where c > 0. (a) Find c. (b) Find the cdf F (). (c) Find the 50th percentile (the median) for the distribution. (d) Find the general formula for F^-1 (p), the 100pth percentile of the distribution when 0 < p < 1.
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise where c > 0. (a) Determine c. (b) Find the cdf F (). (c) Compute P (-0.5 < X < 0.75). (d) Compute P (|X| > 0.25). (e) Compute P (X > 0.75 | X > 0). (f) Compute P (|X| > 0.75| |X| > 0.5).
Show if X ~ F( p, q) , then [(p/q) X]/[1+(p/q)X] ~ beta (p/2, q/2). Use...
Show if X ~ F( p, q) , then [(p/q) X]/[1+(p/q)X] ~ beta (p/2, q/2). Use transformation method.
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove R∪(S∩T) = (R∪S)∩(R∪T). 4.Consider the relation R={(x,y)∈R×R||x−y|≤1} on Z. Show that this relation is reflexive and symmetric but not transitive.
1. Suppose a random variable X has a pmf 
p(x) = 3^(x-1)/4^x , x = 1,2,......
1. Suppose a random variable X has a pmf 
p(x) = 3^(x-1)/4^x , x = 1,2,... (a) Find the moment generating function of X. 
 (b) Give a realistic example of an experiment that this random variable can be defined from its sample space. 
 (c) Find the mean and variance of X.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT