Question

Linear Algebra Problem: Show that if x and y are vectors in R2, then x+y and...

Linear Algebra Problem:

Show that if x and y are vectors in R2, then x+y and x-y are the two diagonals of the parallelogram whose sides are x and y.

Thank you

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Linear Algebra What does it mean for vectors to span Rm? Please give a precise and...
Linear Algebra What does it mean for vectors to span Rm? Please give a precise and complete definition. Thank you!
Exercise 9.1.11 Consider the set of all vectors in R2,(x, y) such that x + y...
Exercise 9.1.11 Consider the set of all vectors in R2,(x, y) such that x + y ≥ 0. Let the vector space operations be the usual ones. Is this a vector space? Is it a subspace of R2? Exercise 9.1.12 Consider the vectors in R2,(x, y) such that xy = 0. Is this a subspace of R2? Is it a vector space? The addition and scalar multiplication are the usual operations.
Linear Algebra: Given a nonzero vector x1 in X, show that there is a linear function...
Linear Algebra: Given a nonzero vector x1 in X, show that there is a linear function I such that l(x1) not equal to 0
Let the vectors a and b be in X = Span{x1,x2,x3}. Assume all vectors are in...
Let the vectors a and b be in X = Span{x1,x2,x3}. Assume all vectors are in R^n for some positive integer n. 1. Show that 2a - b is in X. Let x4 be a vector in Rn that is not contained in X. 2. Show b is a linear combination of x1,x2,x3,x4. Edit: I don't really know what you mean, "what does the question repersent." This is word for word a homework problem I have for linear algebra.
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace...
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace of M 2x2. I know that a diagonal matrix is a square of n x n matrix whose nondiagonal entries are zero, such as the n x n identity matrix. But could you explain every step of how to prove that this diagonal matrix is a subspace of M 2x2. Thanks.
PLEASE a need the answer using vectors !, like sum of vectors, etc!! show that for...
PLEASE a need the answer using vectors !, like sum of vectors, etc!! show that for any triangle ABC the middle points of its sides M N L and a point A form a parallelogram
Linear Algebra Write x as the sum of two vectors, one is Span {u1, u2, u3}...
Linear Algebra Write x as the sum of two vectors, one is Span {u1, u2, u3} and one in Span {u4}. Assume that {u1,...,u4} is an orthogonal basis for R4 u1 = [0, 1, -6, -1] , u2 = [5, 7, 1, 1], u3 = [1, 0, 1, -6], u4 = [7, -5, -1, 1], x = [14, -9, 4, 0] x = (Type an integer or simplified fraction for each matrix element.)      
Linear algebra question Show that T = {y ∈ C∞(R) : y00−49y = 0} is a...
Linear algebra question Show that T = {y ∈ C∞(R) : y00−49y = 0} is a vector subspace of C∞(R).
please show proofs and an examples if possible. -thank you ps: any recommendations for a youtube...
please show proofs and an examples if possible. -thank you ps: any recommendations for a youtube channel that covers linear algebra proofs? 1.) Prove directly that a system of two homogeneous linear equations in three or more variables has a nonzero solution. 2.). Prove directly that every sequence of three vectors in R2 is linearly dependent.
Topic: Math - Linear Algebra Focus: Matrices, Linear Independence and Linear Dependence Consider four vectors v1...
Topic: Math - Linear Algebra Focus: Matrices, Linear Independence and Linear Dependence Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0], where a and b are parameters. Find all conditions on the values of a and b (if any) for which: 1. The number of linearly independent vectors in this collection is 1. 2. The number of linearly independent vectors in this collection is 2. 3. The number of linearly independent vectors in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT