Question

determine the span of u=(1,2,0) v=(3,2,-1) w=(-2,0,1) and determine if u,v, and w are linearly dependent.

determine the span of u=(1,2,0) v=(3,2,-1) w=(-2,0,1) and determine if u,v, and w are linearly dependent.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that the span of three linearly independent vectors, u, v, w is R3
Prove that the span of three linearly independent vectors, u, v, w is R3
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for...
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for any vector z in V whatsoever, the vectors u, v, w and z are linearly dependent.
Let (u,v,w,t) be a linearly independent list of vectors in R4. Determine if (u, v-u, w+5v,...
Let (u,v,w,t) be a linearly independent list of vectors in R4. Determine if (u, v-u, w+5v, t) is a linearly independent list. Explain your reasoning and Show work.
vectors u=(1,2,3), v=(2,5,7), w=(1,3,5) are linearly dependent or independent? (using echelon form)
vectors u=(1,2,3), v=(2,5,7), w=(1,3,5) are linearly dependent or independent? (using echelon form)
U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the...
U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the sum of two orthogonal vectors, one in span{U} and one orthogonal to U
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set...
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set S′={3u−w,v+w,−2w}S′={3u−w,v+w,−2w} is also a linearly independent set in V.
Suppose v1, v2, . . . , vn is linearly independent in V and w ∈...
Suppose v1, v2, . . . , vn is linearly independent in V and w ∈ V . Show that v1, v2, . . . , vn, w is linearly independent if and only if w ∈/ Span(v1, v2, . . . , vn).
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let U and W be subspaces of a nite dimensional vector space V such that U...
Let U and W be subspaces of a nite dimensional vector space V such that U ∩ W = {~0}. Dene their sum U + W := {u + w | u ∈ U, w ∈ W}. (1) Prove that U + W is a subspace of V . (2) Let U = {u1, . . . , ur} and W = {w1, . . . , ws} be bases of U and W respectively. Prove that U ∪ W...
Let V = R^3 and let W ⊂ V be defined by W = span{(1, 1,...
Let V = R^3 and let W ⊂ V be defined by W = span{(1, 1, 1),(2, 1, 0)}. Show that W is a plane containing the origin, and find the equation of W.