Question

a)Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) =...

a)Find the eigenvalues and eigenfunctions of the Sturm-Liouville system
y"+ lamda y = 0
y(0) = 0
y'(1) = 1

I got y=x and y=sin((sqrt k)x)/((sqrt k) cos(sqrt k))

Please do b
(b) Show that the eigenfunctions Yn and Ym you obtained from the above
are orthogonal if n not= m.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) =...
Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) = 0 y'(1) = 1 (b) Show that the eigenfunctions Yn and Ym you obtained from the above are orthogonal if n not= m.
Given: The following boundary value problem:    y"+ lamda*y = 0;                0 < x...
Given: The following boundary value problem:    y"+ lamda*y = 0;                0 < x < 2;         y(0) = 0;          y’(2) = 0 Find corresponding eigenvalues, (lamda)n and normalized eigenfunctions yn Expand the function f(x) = x, in terms of the eigen functions obtained in (i)
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues...
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues and corresponding eigenfuntions. Please do it for lambda = 0, < 0, > 0. I'm strugeling with the basics. Help would be appreciated.
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues...
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues and corresponding eigenfuntions. For lambda = 0, < 0, > 0
find the eigenvalues and the eigenfunctions for the equation y'' + (lambda)y = 0 where y(a)...
find the eigenvalues and the eigenfunctions for the equation y'' + (lambda)y = 0 where y(a) = 0, y(b) = 0 for a<b.
find the eigenvalues and eigenfunctions for the given boundary-value problem. y'' + (lambda)y = 0, y(-pi)=0,...
find the eigenvalues and eigenfunctions for the given boundary-value problem. y'' + (lambda)y = 0, y(-pi)=0, y(pi)=0 Please explain where alpha = (2n+1)/2 comes from in the lambda>0 case. Thank you!!
Find all eigenvalues and corresponding eigenfunctions for the following boundary value problem (x^2)y'' + λy =...
Find all eigenvalues and corresponding eigenfunctions for the following boundary value problem (x^2)y'' + λy = 0, (1 < x < 2), y(1) = 0 = y(2) and in particular the three cases μ < 1/2, μ = 1/2, and μ > 1/2 associated with the sign and vanishing of the discriminant of the characteristic equation
4.Given F(x,y,z)=(cos(y))i+(sin(y))j+k, find divF and curlF at P0(π/4,π,0) divF(P0)=? curlF(P0)= ?
4.Given F(x,y,z)=(cos(y))i+(sin(y))j+k, find divF and curlF at P0(π/4,π,0) divF(P0)=? curlF(P0)= ?
(1) Recall on February 6 in class we discussed e 0 + e 2πi/n + e...
(1) Recall on February 6 in class we discussed e 0 + e 2πi/n + e 4πi/n + · · · + e 2(n−1)πi/n = 0 and in order to explain why it was true we needed to show that the sum of the real parts equals 0 and the sum of the imaginary parts is equal to 0. (a) In class I showed the following identity for n even using the fact that sin(2π − x) = − sin(x):...
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty =...
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty = t Solve the ODE 3. ty' - y = t^3 e^(3t), for t > 0 Compare the number of solutions of the following three initial value problems for the previous ODE 4. (i) y(1) = 1 (ii) y(0) = 1 (iii) y(0) = 0 Solve the IVP, and find the interval of validity of the solution 5. y' + (cot x)y = 5e^(cos x),...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT