Question

f(x) ≥ 0 for all x ∈ (0, 1) and its third derivative f ^3(3)(x) exists...

f(x) ≥ 0 for all x ∈ (0, 1) and its third derivative f ^3(3)(x) exists for all x ∈ (0, 1). If f(x) = 0 for two different values of x in (0, 1), prove that there exists a c in (0, 1) such that f ^(3)(c) = 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and...
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and f'(x)<= 1 for all x2 ㅌ (-a, a). If f(a) = a and f(-a) =-a. Show that f(0) = 0. Hint: Consider the two cases f(0) < 0 and f(0) > 0. Use mean value theorem to prove that these are impossible cases.
1. Consider the function f(x) whose second derivative is f″(x)=10x+2sin(x). If f(0)=2 and f′(0)=3, what is...
1. Consider the function f(x) whose second derivative is f″(x)=10x+2sin(x). If f(0)=2 and f′(0)=3, what is f(x)?
For the given function: f [0; 3]→R is continuous, and all of its values are rational...
For the given function: f [0; 3]→R is continuous, and all of its values are rational numbers. It is also known that f(0) = 1. Can you find f(3)?Justification b) Let [x] denote the smallest integer, not larger than x. For instance,[2.65] = 2 = [2], [−1.5] =−2. Caution: [x] is not equal to |x|! Find the points at which the function f : R→R. f(x) = cos([−x] + [x]) has or respectively, does not have a derivative.
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also...
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also a polynomial in Z[x]. Let R be the following subset of Z[x]: R = {f(x) ∈ Z[x] | f ' (0) = 0}. (a) Prove that R is a subring of Z[x]. (b) Prove that R is not an ideal of Z[x].
Suppose f is continuous for x is greater than or equal to 0, f'(x) exists for...
Suppose f is continuous for x is greater than or equal to 0, f'(x) exists for x greater than 0, f(0)=0, f' is monotonically increasing. For x greater than 0, put g(x) = f(x)/x and prove that g is monotonically increasing.
Suppose the derivative of f exists, and assume that f(1) = 4, and f'(1) = 5....
Suppose the derivative of f exists, and assume that f(1) = 4, and f'(1) = 5. Let g(x) = x^2f(x), and h(x) = f(x)/x-2 a) g' (1) = ?? find the equation of the tangent line to g(x) at x = 1 y = ?? b) h'(1) = ?? Find the equation of the tangent line to h(x) at x = 1 y = ??
Find the derivative of the function using the definition of derivative. f(x) = 1 5 x...
Find the derivative of the function using the definition of derivative. f(x) = 1 5 x − 1 6 f '(x) = B, f(x) = 2.5x2 − x + 4.8 f '(x) = C, f(x) = 3x4 f '(x) = D, If f(t) = 3 t and a ≠ 0 , find f '(a). f '(a) =
1)Consider the function f(x)f(x) whose second derivative is f″(x)=9x+8sin(x). If f(0)=4 and f′(0)=2, what is f(5)?...
1)Consider the function f(x)f(x) whose second derivative is f″(x)=9x+8sin(x). If f(0)=4 and f′(0)=2, what is f(5)? 2) Consider the function f(x)=(7/x^3)−(2/x^5). Let F(x) be the antiderivative of f(x) with F(1)=0.   3)Given that the graph of f(x) passes through the point (5,4) and that the slope of its tangent line at (x,f(x)) is 3x+3, what is  f(2)? Then F(2) equals
compute f'(x) of f(x) = |x|^3. compute f''(x). if there exists values that dont exist for...
compute f'(x) of f(x) = |x|^3. compute f''(x). if there exists values that dont exist for either then please state that. now show that f'(0) does not exist.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT