Question

Let [a],[b],[c] be a subset of Zn. Show that if [a]+[b]=[a]+[c], then [b]=[c].

Let [a],[b],[c] be a subset of Zn. Show that if [a]+[b]=[a]+[c], then [b]=[c].

Homework Answers

Answer #1

If you have any doubt ask in comment section. I'll clear.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let a ∈ R. Show that {e^ax, xe^ax} is a linearly independent subset of the vector...
Let a ∈ R. Show that {e^ax, xe^ax} is a linearly independent subset of the vector space C[0, 1]. Let a, b ∈ R be such that a≠b. Show that {e^ax, e^bx} is a linearly independent subset of the vector space C[0, 1].
let A be a subset of Rn and let x be a point in Rn. Show...
let A be a subset of Rn and let x be a point in Rn. Show that x is a limit point of A if and only if every open ball about x contains a point of A that is not equal to x
Let Y be a subspace of X and let S be a subset of Y. Show...
Let Y be a subspace of X and let S be a subset of Y. Show that the closure of S in Y coincides with the intersection between Y and the closure of S in X.
Let A and B be sets and let X be a subset of A. Let f:...
Let A and B be sets and let X be a subset of A. Let f: A→B be a bijection. Prove that f(A-X)=B-f(X).
Let X be a subset of the integers from 1 to 1997 such that |X|≥34. Show...
Let X be a subset of the integers from 1 to 1997 such that |X|≥34. Show that there exists distinct a,b,c∈X and distinct x,y,z∈X such that a+b+c=x+y+z and {a,b,c}≠{x,y,z}.
Let n be a positive integer and let U be a finite subset of Mn×n(C) which...
Let n be a positive integer and let U be a finite subset of Mn×n(C) which is closed under multiplication of matrices. Show that there exists a matrix A in U satisfying tr(A) ∈ {1,...,n}
Let X be a topological space and A a subset of X. Show that there exists...
Let X be a topological space and A a subset of X. Show that there exists in X a neighbourhood Ox of each point x ∈ A such that A∩Ox is closed in Ox, if and only if A is an intersection of a closed set with an open set.
Let A, B be sets and f: A -> B. For any subsets X,Y subset of...
Let A, B be sets and f: A -> B. For any subsets X,Y subset of A, X is a subset of Y iff f(x) is a subset of f(Y). Prove your answer. If the statement is false indicate an additional hypothesis the would make the statement true.
5.2.12. Let the random variable Zn have a Poisson distribution with parameter μ = n. Show...
5.2.12. Let the random variable Zn have a Poisson distribution with parameter μ = n. Show that the limiting distribution of the random variable Yn =(Zn−n)/√n is normal with mean zero and variance 1. (Hint: by using the CLT, first show Zn is the sum of a random sample of size n from a Poisson random variable with mean 1.)
Let Zn = {0, 1, 2, . . . , n − 1}, let · represent...
Let Zn = {0, 1, 2, . . . , n − 1}, let · represent multiplication (mod n), and let a ∈ Zn. Prove that there exists b ∈ Zn such that a · b = 1 if and only if gcd(a, n) = 1.