Question

Given that R is an integral domain, prove that a) the only nilpotent element is the...

Given that R is an integral domain, prove that

a) the only nilpotent element is the zero element of R,

b) the multiplicative identity is the only nonzero idempotent element.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be an integral domain. Prove that R[x] is an integral domain.
Let R be an integral domain. Prove that R[x] is an integral domain.
Let R be an integral domain. Prove that if R is a field to begin with,...
Let R be an integral domain. Prove that if R is a field to begin with, then the field of quotients Q is isomorphic to R
6.4.7. (a) Show that a subring R' of an integral domain R is an integral domain,...
6.4.7. (a) Show that a subring R' of an integral domain R is an integral domain, if 1∈ R'. (b) The Gaussian integers are the complex numbers whose real and imaginary parts are integers. Show that the set of Gaussian integers is an integral domain. (c) Show that the ring of symmetric polynomials in n variables is an integral domain.
Prove that every field is an integral domain. Give an example of an integral domain that...
Prove that every field is an integral domain. Give an example of an integral domain that is not a field. Give an example of a ring that is not an integral domain.
Consider the ring R = Q[x]/<x^2>. (a) Is R an integral domain? Justify your answer. (b)...
Consider the ring R = Q[x]/<x^2>. (a) Is R an integral domain? Justify your answer. (b) IS [x+1] a unit in R? If it is, find its multiplicative inverse.
Suppose R is a Principle Ideal Domain and a and b are nonzero elements of R....
Suppose R is a Principle Ideal Domain and a and b are nonzero elements of R. Prove that (a,b)=(d) if and only if d is a greatest common divisor of a and b.
Prove or disprove (a) Z[x]/(x^2 + 1), (b) Z[x]/(x^2 - 1) is an Integral domain. By...
Prove or disprove (a) Z[x]/(x^2 + 1), (b) Z[x]/(x^2 - 1) is an Integral domain. By showing (a) x^2+1 is a prime ideal or showing x^2 + 1 is not prime ideal. By showing (b) x^2-1 is a prime ideal or showing x^2 - 1 is not prime ideal. (Hint: R/I is an integral domain if and only if I is a prime ideal.)
An element [a] of Zn is said to be idempotent if [a]^2 = [a]. Prove that...
An element [a] of Zn is said to be idempotent if [a]^2 = [a]. Prove that if p is a prime number, then [0] and [1] are the only idempotents in Zp. (abstract algebra)
An element [a] of Zn is said to be idempotent if [a]^2 = [a]. Prove that...
An element [a] of Zn is said to be idempotent if [a]^2 = [a]. Prove that if p is a prime number, then [0] and [1] are the only idempotents in Zp. (abstract algebra)
Prove that there is no integral domain with exactly 6 elements. Can your argument be adapted...
Prove that there is no integral domain with exactly 6 elements. Can your argument be adapted to show that there is no integral domain with exactly 4 elements? What about 15 elements? Use these observations to guess a general result about the number of elements in a finite integral domain.