Question

Find a second solution of the given differential equation. Use reductionof order or Formula (4). Assume...

Find a second solution of the given differential equation. Use reductionof order or Formula (4). Assume an appropriate interval of validity.

(1 +x)y′′+xy′−y= 0 ; y1=x

Homework Answers

Answer #1

Here, the given equation is,

where   is given.

we let, and proceed in following ways to find the answer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order,...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order, to find a second solution dx **Please do not solve this via the formula--please use the REDUCTION METHOD ONLY. y2(x)= ?? Given: y'' + 2y' + y = 0;    y1 = xe−x
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx        (5) as instructed, to find a second solution y2(x). y'' + 64y = 0;    y1 = cos(8x) y2 =
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x)       dx (5) as instructed, to find a second solution y2(x). x2y'' -11xy' + 36y = 0; y1 = x6 y2 =
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) ∫(e(−∫P(x) dx))/y12(x)dx (5) as instructed, to find a second solution y2(x).4x2y'' + y = 0; y1 = x1/2 ln(x) y2 = ?
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' + 100y = 0; y1 = cos 10x I've gotten to the point all the way to where y2 = u y1, but my integral is wrong for some reason This was my answer y2= c1((sin(20x)+20x)cos10x)/40 + c2(cos(10x))
Follow the steps below to use the method of reduction of order to find a second...
Follow the steps below to use the method of reduction of order to find a second solution y2 given the following differential equation and y1, which solves the given homogeneous equation: xy" + y' = 0; y1 = ln(x) Step #1: Let y2 = uy1, for u = u(x), and find y'2 and y"2. Step #2: Plug y'2 and y"2 into the differential equation and simplify. Step #3: Use w = u' to transform your previous answer into a linear...
Use the METHOD of REDUCTION OF ORDER to find the general solution of the differential equation...
Use the METHOD of REDUCTION OF ORDER to find the general solution of the differential equation y"-4y=2 given that y1=e^-2x is a solution for the associated differential equation. When solving, use y=y1u and w=u'.
Consider the differential equation x2y''+xy'-y=0, x>0. a. Verify that y(x)=x is a solution. b. Find a...
Consider the differential equation x2y''+xy'-y=0, x>0. a. Verify that y(x)=x is a solution. b. Find a second linearly independent solution using the method of reduction of order. [Please use y2(x) = v(x)y1(x)]
Verify that the given function is a solution and use Reduction of Order to find a...
Verify that the given function is a solution and use Reduction of Order to find a second linearly independent solution. a. x2y′′ −2xy′ −4y = 0, y1(x) = x4. b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT