Question

Let V be the set of all ordered pairs of real numbers. Consider the following addition...

Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2).

• u ⊕ v = (u1 + v1 + 1, u2 + v2 + )

• ku = (ku1 + k − 1, ku2 + k − 1)

1)Show that the zero vector is 0 = (−1, −1).

2)Find the additive inverse −u for u = (u1, u2). Note: is not (−u1, −u2), so don’t write that.

3)Show that V is not a vector space.

Homework Answers

Answer #1

in part 3

It is satisfying all the properties of a vector space .

So it comes out to be a vector space.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). • u ⊕ v = (u1 + v1 + 1, u2 + v2 + ) • ku = (ku1 + k − 1, ku2 + k − 1) Show that V is not a vector space.
Consider the set of all ordered pairs of real numbers with standard vector addition but with...
Consider the set of all ordered pairs of real numbers with standard vector addition but with scalar multiplication defined by  k(x,y)=(k^2x,k^2y). I know this violates (alpha + beta)x = alphax + betax, but I'm not for sure how to figure that out? How would I figure out which axioms it violates?
Let V be the set of all triples (r,s,t) of real numbers with the standard vector...
Let V be the set of all triples (r,s,t) of real numbers with the standard vector addition, and with scalar multiplication in V defined by k(r,s,t) = (kr,ks,t). Show that V is not a vector space, by considering an axiom that involves scalar multiplication. If your argument involves showing that a certain axiom does not hold, support your argument by giving an example that involves specific numbers. Your answer must be well-written.
Are the following vector space and why? 1.The set V of all ordered pairs (x, y)...
Are the following vector space and why? 1.The set V of all ordered pairs (x, y) with the addition of R2, but scalar multiplication a(x, y) = (x, y) for all a in R. 2. The set V of all 2 × 2 matrices whose entries sum to 0; operations of M22.
(i) Let u= (u1,u2) and v= (v1,v2). Show that the following is an inner product by...
(i) Let u= (u1,u2) and v= (v1,v2). Show that the following is an inner product by verifying that the inner product hold <u,v>= 4u1v1 + u2v2 +4u2v2 (ii) Let u= (u1, u2, u3) and v= (v1,v2,v3). Show that the following is an inner product by verifying that the inner product hold <u,v> = 2u1v1 + u2v2 + 4u3v3
Consider C as a vector space over R in the natural way. Here vector addition and...
Consider C as a vector space over R in the natural way. Here vector addition and scalar multiplication are the usual addition and multiplication of complex numbers. Show that {1 − i, 1 + i} is linearly independent. Consider C as a vector space over C in the natural way. Here vector addition is the usual addition of complex numbers and the scalar multiplication is the usual multiplication of a real number by a complex number. Show that {1 −...
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4...
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4 (a) Let w  =  (0, 6, 4, 1). Find ||w||. (b) Let W be the subspace spanned by the vectors u1  =  (0, 0, 2, 1), and   u2  =  (3, 0, −2, 1). Use the Gram-Schmidt process to transform the basis {u1, u2} into an orthonormal basis {v1, v2}. Enter the components of the vector v2 into the answer box below, separated with commas.
Let V=R2 with the standard scalar multiplication and nonstandard addition given as follows: (x1, y1)⊕(x2, y2)...
Let V=R2 with the standard scalar multiplication and nonstandard addition given as follows: (x1, y1)⊕(x2, y2) := (x1x2, y1+y2). Show that (V,⊕, .) is not a vector space.
Let P4 denote the space of polynomials of degree less than 4 with real coefficients. Show...
Let P4 denote the space of polynomials of degree less than 4 with real coefficients. Show that the standard operations of addition of polynomials, and multiplication of polynomials by a scalar, give P4 the structure of a vector space (over the real numbers R). Your answer should include verification of each of the eight vector space axioms (you may assume the two closure axioms hold for this problem).
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any...
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any non-zero λ1,…,λn∈R, λ1v1,…,λnvn is also a basis of V. (b) Let ui=v1+⋯+vi, 1≤i≤n. Show that u1,…,un is a basis of V.