Question

let f:A->B and let D1, D2, and D be subsets of A. Prove or Disprove F^-1(D1UD2)=F^-1(D1)UF^-1(D2)

let f:A->B and let D1, D2, and D be subsets of A.

Prove or Disprove

F^-1(D1UD2)=F^-1(D1)UF^-1(D2)

Homework Answers

Answer #1

Given:

D1, D2, and D be subsets of A

To prove:

Solution:

For any subsets

if ,

Alternative proof:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let d1= gcd(a,b) and d2=gcd(b,r). Prove that d1=d2 by d2<= d1 and d1<=d2
Let d1= gcd(a,b) and d2=gcd(b,r). Prove that d1=d2 by d2<= d1 and d1<=d2
Prove or disprove: If f:A→B and g:B→A are functions and g◦f is a bijection, then f...
Prove or disprove: If f:A→B and g:B→A are functions and g◦f is a bijection, then f and g are bijections.
1. Let D1 and D2 be two open disks in R^2 whose closures D1 and D2...
1. Let D1 and D2 be two open disks in R^2 whose closures D1 and D2 intersect in exactly one point, so the boundary circles of the two disks are tangent. Determine which of the following subspaces of R 2 are connected: (a) D1 ∪ D2 . (b) D1 ∪ D2 . (c) D1 ∪ D2 .
. Let f : Z → N be function. a. Prove or disprove: f is not...
. Let f : Z → N be function. a. Prove or disprove: f is not strictly increasing. b. Prove or disprove: f is not strictly decreasing.
Prove or disprove: If A and B are subsets of a universal set U such that...
Prove or disprove: If A and B are subsets of a universal set U such that A is not a subset of B and B is not a subset of A, then A complement is not a subset of B complement and B complement is not a subset of A complement
Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is...
Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is injective and g is surjective.*You may not use, without proof, the result that if g◦f is surjective then g is surjective, and if g◦f is injective then f is injective. In fact, doing so would result in circular logic.
1. a) Let f : C → D be a function. Prove that if C1 and...
1. a) Let f : C → D be a function. Prove that if C1 and C2 be two subsets of C, then f(C1ꓴC2) = f(C1) ꓴ f(C2). b) Let f : C → D be a function. Let C1 and C2 be subsets of C. Give an example of sets C, C1, C2 and D for which f(C ꓵ D) ≠ f(C1) ꓵ f(C2).
Let E and F be two disjoint closed subsets in metric space (X,d). Prove that there...
Let E and F be two disjoint closed subsets in metric space (X,d). Prove that there exist two disjoint open subsets U and V in (X,d) such that U⊃E and V⊃F
Let f : A → B be a function and let A1 and A2 be subsets...
Let f : A → B be a function and let A1 and A2 be subsets of A. Prove that if f is one-to-one, then f(A1 ∩ A2) = f(A1) ∩ f(A2).
Let d1 = 2, d2 = 3, and dn = dn−1 · dn−2. Find an explicit...
Let d1 = 2, d2 = 3, and dn = dn−1 · dn−2. Find an explicit formula for dn in terms of n and prove that it works.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT