Question

Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system...

Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system of PDE Ut=Vx, Vt=Ux,

A.) Show that both U and V are classical solutions to the wave equations  Utt= Uxx.

Which result from multivariable calculus do you need to justify the conclusion.

B)Given a classical sol. u(t,x) to the wave equation, can you construct a function v(t,x) such that u(t,x), v(t,x)

form of sol. to the first order system.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x 2) U(x,0) = x^3 , Ut(x,0) =sinx (PDE)
Two functions, u(x,y) and v(x,y), are said to verify the Cauchy-Riemann differentiation equations if they satisfy...
Two functions, u(x,y) and v(x,y), are said to verify the Cauchy-Riemann differentiation equations if they satisfy the following equations ∂u\dx=∂v/dy and ∂u/dy=−(∂v/dx) a. Verify that the Cauchy-Riemann differentiation equations can be written in the polar coordinate form as ∂u/dr=1/dr ∂v/dθ and ∂v/dr =−1/r ∂u/∂θ b. Show that the following functions satisfy the Cauchy-Riemann differen- tiation equations u=ln sqrt(x^(2)+y^(2)) and v= arctan y/x.
Verify the Caucy-riemann equations for the functions u(x,y), v(x,y) defined in the given domain u(x,y)=x³-3xy², v(x,y)=3x²y-y³,...
Verify the Caucy-riemann equations for the functions u(x,y), v(x,y) defined in the given domain u(x,y)=x³-3xy², v(x,y)=3x²y-y³, (x,y)ɛR u(x,y)=sinxcosy,v(x,y)=cosxsiny (x,y)ɛR u(x,y)=x/(x²+y²), v(x,y)=-y/(x²+y²),(x²+y²),   ( x²+y²)≠0 u(x,y)=1/2 log(x²+y²), v(x,y)=sin¯¹(y/√¯x²+y²), ( x˃0 )                          In each case,state a complex functions whose real and imaginary parts are u(x,y) and v(x,y)
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x)...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x) instead of ex and e−x. (3) Write the functions alphabetically, so that if the solutions involve cos and sin, your answer would be Acos(x)+Bsin(x). (4) For polynomials use arbitrary constants in alphabetical order starting with highest power of x, for example, Ax2+Bx. (5) Write differential equations with leading term positive, so X′′−2X=0 rather than −X′′+2X=0. (6) Finally you need to simplify arbitrary constants. For...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x)...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x) instead of ex and e−x. (3) Write the functions alphabetically, so that if the solutions involve cos and sin, your answer would be Acos(x)+Bsin(x). (4) For polynomials use arbitrary constants in alphabetical order starting with highest power of x, for example, Ax2+Bx. (5) Write differential equations with leading term positive, so X′′−2X=0 rather than −X′′+2X=0. (6) Finally you need to simplify arbitrary constants. For...
Consider permutations of the 26-character lowercase alphabet Σ={a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}. In how many of these permutations do a,b,c...
Consider permutations of the 26-character lowercase alphabet Σ={a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}. In how many of these permutations do a,b,c occur consecutively and in that order? In how many of these permutations does a appear before b and b appear before c?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT