Question

Show that if G is a nilpotent group and 1 ≠ N, and N is normal...

Show that if G is a nilpotent group and 1 ≠ N, and N is normal in G, then N ∩ Z(G) ≠ 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Let G be a group and N be a normal subgroup. Show that if G...
1) Let G be a group and N be a normal subgroup. Show that if G is cyclic, then G/N is cyclic. Is the converse true? 2) What are the zero divisors of Z6?
Let N be a nilpotent mapping V and letγ:V→V be an isomorphism. 1.Show that N and...
Let N be a nilpotent mapping V and letγ:V→V be an isomorphism. 1.Show that N and γ◦N◦γ−1 have the same canonical form 2. If M is another nilpotent mapping of V such that N and M have the same canonical form, show that there is an isomorphism γ such that γ◦N◦γ−1=M
let H nilpotent normal subgroup of G and f be automorphism map from G to G...
let H nilpotent normal subgroup of G and f be automorphism map from G to G ,then f(H) is nilpotent normal subgroup of G
(Linear Algebra) A n×n-matrix is nilpotent if there is a "r" such that Ar is the...
(Linear Algebra) A n×n-matrix is nilpotent if there is a "r" such that Ar is the nulmatrix. 1. show an example of a non-trivial, nilpotent 2×2-matrix 2.let A be an invertible n×n-matrix. show that A is not nilpotent.
Show that if G is a group, H a subgroup of G with |H| = n,...
Show that if G is a group, H a subgroup of G with |H| = n, and H is the only subgroup of G of order n, then H is a normal subgroup of G. Hint: Show that aHa-1 is a subgroup of G and is isomorphic to H for every a ∈ G.
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup...
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup of G then phi(N) is a normal subgroup of H. Prove it is a subgroup and prove it is normal?
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
A subgroup H of a group G is called a normal subgroup if gH=Hg for all...
A subgroup H of a group G is called a normal subgroup if gH=Hg for all g ∈ G. Every Group contains at least two normal subgroups: the subgroup consisting of the identity element only {e}; and the entire group G. If G=S(n) show that A(n) (the subgroup of even permuations) is also a normal subgroup of G.
Let N be a normal subgroup of G. Show that the order 2 element in N...
Let N be a normal subgroup of G. Show that the order 2 element in N is in the center of G if N and Z_4 are isomorphic.
A group G is a simple group if the only normal subgroups of G are G...
A group G is a simple group if the only normal subgroups of G are G itself and {e}. In other words, G is simple if G has no non-trivial proper normal subgroups. Algebraists have proven (using more advanced techniques than ones we’ve discussed) that An is a simple group for n ≥ 5. Using this fact, prove that for n ≥ 5, An has no subgroup of order n!/4 . (This generalizes HW5,#3 as well as our counterexample from...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT