Question

(3 pts) Let A be a square n × n matrix whose rows are orthogonal. Prove...

(3 pts) Let A be a square n × n matrix whose rows are orthogonal. Prove that the columns of A are also orthogonal.

Hint: The orthogonality of rows is equivalent to AAT = I ⇒ ATAAT = AT

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be square matrix prove that A^2 = I if and only if rank(I+A)+rank(I-A)=n
Let A be square matrix prove that A^2 = I if and only if rank(I+A)+rank(I-A)=n
1. Let a,b,c,d be row vectors and form the matrix A whose rows are a,b,c,d. If...
1. Let a,b,c,d be row vectors and form the matrix A whose rows are a,b,c,d. If by a sequence of row operations applied to A we reach a matrix whose last row is 0 (all entries are 0) then:        a. a,b,c,d are linearly dependent   b. one of a,b,c,d must be 0.       c. {a,b,c,d} is linearly independent.       d. {a,b,c,d} is a basis. 2. Suppose a, b, c, d are vectors in R4 . Then they form a...
Let A be a square matrix with A^2 = A. Prove that A is diagonisable and...
Let A be a square matrix with A^2 = A. Prove that A is diagonisable and that 1 and 0 are the only 2 possible eigenvalues
Let M be an n x n matrix with each entry equal to either 0 or...
Let M be an n x n matrix with each entry equal to either 0 or 1. Let mij denote the entry in row i and column j. A diagonal entry is one of the form mii for some i. Swapping rows i and j of the matrix M denotes the following action: we swap the values mik and mjk for k = 1,2, ... , n. Swapping two columns is defined analogously. We say that M is rearrangeable if...
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
Let A be an n×n nonsingular matrix. Denote by adj(A) the adjugate matrix of A. Prove:...
Let A be an n×n nonsingular matrix. Denote by adj(A) the adjugate matrix of A. Prove: 1)   det(adj(A)) = (det(A)) 2)    adj(adj(A)) = (det(A))n−2A
Prove the Cayley-Hamilton theorem for any n x n square matrix.
Prove the Cayley-Hamilton theorem for any n x n square matrix.
Prove: If A is an n × n symmetric matrix all of whose eigenvalues are nonnegative,...
Prove: If A is an n × n symmetric matrix all of whose eigenvalues are nonnegative, then xTAx ≥ 0 for all nonzero x in the vector space Rn.
This is a TRUE-FALSE Question with justification. If Q is an orthogonal n×n matrix, then Row(Q)...
This is a TRUE-FALSE Question with justification. If Q is an orthogonal n×n matrix, then Row(Q) = Col(Q). The Answer to this is TRUE. I want to know a solid reasoning/explanation for it. In one of the answers, it says that " Since Q is orthogonal, QTQ = I, so Q is invertible, hence Row(Q) = Col(Q) = Rn. But my question is: Why is it that for an invertible matrix, Row(Q) = Col (Q) ? Any other explanation that...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT