Question

let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) ,...

let v be an inner product space with an inner product(u,v) prove that ||u+v||<=||u||+||v||, ||w||^2=(w,w) , for all u,v load to V. hint : you may use the Cauchy-Schwars inquality: |{u,v}|,= ||u||*||v||.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A2. Let v be a fixed vector in an inner product space V. Let W be...
A2. Let v be a fixed vector in an inner product space V. Let W be the subset of V consisting of all vectors in V that are orthogonal to v. In set language, W = { w LaTeX: \in ∈V: <w, v> = 0}. Show that W is a subspace of V. Then, if V = R3, v = (1, 1, 1), and the inner product is the usual dot product, find a basis for W.
Let V be an inner product space. Prove that if w⃗ is orthogonal to each of...
Let V be an inner product space. Prove that if w⃗ is orthogonal to each of the vectors in the set S = {⃗v1, ⃗v2, . . . , ⃗vm}, then w⃗ is also orthogonal to each of the vectors in the subspace W = SpanS of V .
Let U and V be subspaces of the vector space W . Recall that U ∩...
Let U and V be subspaces of the vector space W . Recall that U ∩ V is the set of all vectors ⃗v in W that are in both of U or V , and that U ∪ V is the set of all vectors ⃗v in W that are in at least one of U or V i: Prove: U ∩V is a subspace of W. ii: Consider the statement: “U ∪ V is a subspace of W...
Let W be a subspace of a f.d. inner product space V and let PW be...
Let W be a subspace of a f.d. inner product space V and let PW be the orthogonal projection of V onto W. Show that the characteristic polynomial of PW is (t-1)^dimW t^(dimv-dimw)
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1,...
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1, x2) ? R^2. Show that (x2, ?x1) is orthogonal to v. b. Find all vectors (x, y, z) ? R^3 that are orthogonal (with the Euclidean inner product, i.e. dot product) to both (1, 3, ?2) and (2, 7, 5). C.Let V be an inner product space. Suppose u is orthogonal to both v and w. Prove that for any scalars c and d,...
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set...
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set S′={3u−w,v+w,−2w}S′={3u−w,v+w,−2w} is also a linearly independent set in V.
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T...
Let W be an inner product space and v1,...,vn a basis of V. Show that〈S, T 〉 = 〈Sv1, T v1〉 + . . . + 〈Svn, T vn〉 for S,T ∈ L(V,W) is an inner product on L(V,W). Let S ∈ L(R^2) be given by S(x1, x2) = (x1 + x2, x2) and let I ∈ L(R^2) be the identity operator. Using the inner product defined in problem 1 for the standard basis and the dot product, compute 〈S,...
Let U and W be subspaces of a nite dimensional vector space V such that U...
Let U and W be subspaces of a nite dimensional vector space V such that U ∩ W = {~0}. Dene their sum U + W := {u + w | u ∈ U, w ∈ W}. (1) Prove that U + W is a subspace of V . (2) Let U = {u1, . . . , ur} and W = {w1, . . . , ws} be bases of U and W respectively. Prove that U ∪ W...
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for...
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for any vector z in V whatsoever, the vectors u, v, w and z are linearly dependent.
Suppose V is a finite dimensional inner product space. Prove that every orthogonal operator on V...
Suppose V is a finite dimensional inner product space. Prove that every orthogonal operator on V , i.e. <T(u), T(v)> , ∀u,v ∈ V , is an isomorphism.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT