Question

Let a, b ∈Z and n ∈N. (a) True/False: If a2 ≡ b2 (mod n), then...

Let a, b ∈Z and n ∈N.

(a) True/False: If a2 ≡ b2 (mod n), then a ≡ b (mod n).

(b) True/False: If a ≡ b (mod p) and a ≡ b (mod q) for distinct primes p and q, then a ≡ b (mod pq).

Justify your answers properly.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p = 26981 and q = 62549 and let n = pq. Find all four...
Let p = 26981 and q = 62549 and let n = pq. Find all four values of a ∈ Z*n such that a2≡1(mod n). [a in Z*n such that a2 is congruent to 1 (mod n)] (Hint: use the Chinese remainder theorem.)
Prove: If n ≡ 3 (mod 8) and n = a2 + b2 + c2 +...
Prove: If n ≡ 3 (mod 8) and n = a2 + b2 + c2 + d2, then exactly one of a, b, c, d is even. (Hint: What can each square be modulo 8?)
Let A and B be true, X, Y, and Z false. P and Q have unknown...
Let A and B be true, X, Y, and Z false. P and Q have unknown truth value. Please, determine the truth value of the propositions in problem 1. Please, show the process of calculation by using the letter ‘T’ for ‘true,’ ‘F’ for ‘false,’ and ‘?’ for ‘unknown value’ under each letter and operator. Please underline your answer (truth value under the main operator) and make it into Bold font 1.  [ ( Z ⊃ P ) ⊃ P ]...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
In this question we show that we can use φ(n)/2. Let n = pq. Let x...
In this question we show that we can use φ(n)/2. Let n = pq. Let x be a number so that gcd(x, n) = 1. Show that x φ(n)/2 = 1 mod p and x φ(n)/2 = 1 mod q, Show that this implies that and x φ(n)/2 = 1 mod n
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
Let phi(n) = integers from 1 to (n-1) that are relatively prime to n 1. Find...
Let phi(n) = integers from 1 to (n-1) that are relatively prime to n 1. Find phi(2^n) 2. Find phi(p^n) 3. Find phi(p•q) where p, q are distinct primes 4. Find phi(a•b) where a, b are relatively prime
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations (a1, a2, a3, · · ·) + (b1, b2, b3, · · ·) = (a1 + b1, a2 + b2, a3 + b3, · · ·), (a1, a2, a3, · · ·) · (b1, b2, b3, · · ·) = (a1 · b1, a2 · b2, a3 ·...