Question

Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues...

Sturm-Liouville problem:

y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0.

Determine the four smallest eigenvalues and corresponding eigenfuntions.

For lambda = 0, < 0, > 0

Homework Answers

Answer #1

(A C2=0 Griven thet y)+C O Ci 0 Cof ST-JA gin JA=O The Smallert eiger us re pm fanctione ane

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues...
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues and corresponding eigenfuntions. Please do it for lambda = 0, < 0, > 0. I'm strugeling with the basics. Help would be appreciated.
Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) =...
Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) = 0 y'(1) = 1 (b) Show that the eigenfunctions Yn and Ym you obtained from the above are orthogonal if n not= m.
a)Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) =...
a)Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) = 0 y'(1) = 1 I got y=x and y=sin((sqrt k)x)/((sqrt k) cos(sqrt k)) Please do b (b) Show that the eigenfunctions Yn and Ym you obtained from the above are orthogonal if n not= m.
in the Theory of sturm-Liouville it is said that any linear operator of second order L(y)=b_0(x)y''+b_1(x)y'+b_2(x)y...
in the Theory of sturm-Liouville it is said that any linear operator of second order L(y)=b_0(x)y''+b_1(x)y'+b_2(x)y can be write as an autoadjunt operator of Sturm-Liouville. Determine the integrant factor and write the operator in the form of Sturm-Liouville operator.
find the eigenvalues and eigenfunctions for the given boundary-value problem. y'' + (lambda)y = 0, y(-pi)=0,...
find the eigenvalues and eigenfunctions for the given boundary-value problem. y'' + (lambda)y = 0, y(-pi)=0, y(pi)=0 Please explain where alpha = (2n+1)/2 comes from in the lambda>0 case. Thank you!!
Find the values of λ (eigenvalues) for which the given problem has a nontrivial solution. Also...
Find the values of λ (eigenvalues) for which the given problem has a nontrivial solution. Also determine the corresponding nontrivial solutions​ (eigenfunctions). 2y''+λy=0;  0<x<π, y(0)=0, y'(π)=0
Find all eigenvalues and corresponding eigenfunctions for the following boundary value problem (x^2)y'' + λy =...
Find all eigenvalues and corresponding eigenfunctions for the following boundary value problem (x^2)y'' + λy = 0, (1 < x < 2), y(1) = 0 = y(2) and in particular the three cases μ < 1/2, μ = 1/2, and μ > 1/2 associated with the sign and vanishing of the discriminant of the characteristic equation
Consider the boundary value problem below (assume λ > 0): y ′′ + λy = 0...
Consider the boundary value problem below (assume λ > 0): y ′′ + λy = 0 y(0) = 0 y ′ (π) = 0 Find the eigenvalues and the associated eigenfunctions for this problem. Show all work.
find the eigenvalues and the eigenfunctions for the equation y'' + (lambda)y = 0 where y(a)...
find the eigenvalues and the eigenfunctions for the equation y'' + (lambda)y = 0 where y(a) = 0, y(b) = 0 for a<b.
Convert the problem into a first order system of equations. Determine the eigenvalues of the resulting...
Convert the problem into a first order system of equations. Determine the eigenvalues of the resulting matrix, and use the eigen values to determine whether or not the solution decays to a constant value. y''+3y'+5y=0 y(0)=0 y'(0)=1